// Copyright 2020 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include #include "pffft_sapi.sapi.h" #include "sandboxed_api/util/flag.h" #include "sandboxed_api/vars.h" ABSL_DECLARE_FLAG(string, sandbox2_danger_danger_permit_all); ABSL_DECLARE_FLAG(string, sandbox2_danger_danger_permit_all_and_log); class PffftSapiSandbox : public PffftSandbox { public: std::unique_ptr ModifyPolicy( sandbox2::PolicyBuilder*) { return sandbox2::PolicyBuilder() .AllowStaticStartup() .AllowOpen() .AllowRead() .AllowWrite() .AllowSystemMalloc() .AllowExit() .AllowSyscalls({ __NR_futex, __NR_close, __NR_getrusage, }) .BuildOrDie(); } }; double UclockSec() { return static_cast(clock()) / CLOCKS_PER_SEC; } int array_output_format = 0; void ShowOutput(const char* name, int n, int cplx, float flops, float t0, float t1, int max_iter) { float mflops = flops / 1e6 / (t1 - t0 + 1e-16); if (array_output_format) { if (flops != -1) { printf("|%9.0f ", mflops); } else printf("| n/a "); } else { if (flops != -1) { printf("n=%5d, %s %16s : %6.0f MFlops [t=%6.0f ns, %d runs]\n", n, (cplx ? "CPLX" : "REAL"), name, mflops, (t1 - t0) / 2 / max_iter * 1e9, max_iter); } } fflush(stdout); } absl::Status PffftMain() { PffftSapiSandbox sandbox; SAPI_RETURN_IF_ERROR(sandbox.Init()); return absl::OkStatus(); } int main(int argc, char* argv[]) { // Initialize Google's logging library. google::InitGoogleLogging(argv[0]); gflags::ParseCommandLineFlags(&argc, &argv, true); // kTransformSizes is a vector keeping the values by which iterates n, its value // representing the input length. More concrete, n is the number of // data points the caclulus is up to (determinating its accuracy). // To show the performance of Fast-Fourier Transformations the program is // testing for various values of n. constexpr int kTransformSizes[] = {64, 96, 128, 160, 192, 256, 384, 5 * 96, 512, 5 * 128, 3 * 256, 800, 1024, 2048, 2400, 4096, 8192, 9 * 1024, 16384, 32768}; LOG(INFO) << "Initializing sandbox...\n"; PffftSapiSandbox sandbox; absl::Status init_status = sandbox.Init(); if (absl::Status status = PffftMain(); !status.ok()) { LOG(ERROR) << "Initialization failed: " << status.ToString(); return EXIT_FAILURE; } LOG(INFO) << "Initialization: " << init_status.ToString(); PffftApi api(&sandbox); int cplx = 0; do { for (int n : kTransformSizes) { const int n_float = n * (cplx ? 2 : 1); int n_bytes = n_float * sizeof(float); std::vector work(2 * n_float + 15, 0.0); sapi::v::Array work_array(&work[0], work.size()); float x[n_bytes], y[n_bytes], z[n_bytes]; sapi::v::Array x_array(x, n_bytes), y_array(y, n_bytes), z_array(z, n_bytes); double t0; double t1; double flops; int k; int max_iter = 5120000 / n * 4; for (k = 0; k < n_float; ++k) { x[k] = 0; } // FFTPack benchmark { // SIMD_SZ == 4 (returning value of pffft_simd_size()) int max_iter_ = max_iter / 4; if (max_iter_ == 0) max_iter_ = 1; if (cplx) { api.cffti(n, work_array.PtrBoth()).IgnoreError(); } else { api.rffti(n, work_array.PtrBoth()).IgnoreError(); } t0 = UclockSec(); for (int iter = 0; iter < max_iter_; ++iter) { if (cplx) { api.cfftf(n, x_array.PtrBoth(), work_array.PtrBoth()).IgnoreError(); api.cfftb(n, x_array.PtrBoth(), work_array.PtrBoth()).IgnoreError(); } else { api.rfftf(n, x_array.PtrBoth(), work_array.PtrBoth()).IgnoreError(); api.rfftb(n, x_array.PtrBoth(), work_array.PtrBoth()).IgnoreError(); } } t1 = UclockSec(); flops = (max_iter_ * 2) * ((cplx ? 5 : 2.5) * n * log((double)n) / M_LN2); ShowOutput("FFTPack", n, cplx, flops, t0, t1, max_iter_); } // PFFFT benchmark { sapi::StatusOr s = api.pffft_new_setup(n, cplx ? PFFFT_COMPLEX : PFFFT_REAL); LOG(INFO) << "Setup status is: " << s.status().ToString(); if (!s.ok()) { printf("Sandbox failed.\n"); return EXIT_FAILURE; } sapi::v::RemotePtr s_reg(s.value()); t0 = UclockSec(); for (int iter = 0; iter < max_iter; ++iter) { api.pffft_transform(&s_reg, x_array.PtrBoth(), z_array.PtrBoth(), y_array.PtrBoth(), PFFFT_FORWARD) .IgnoreError(); api.pffft_transform(&s_reg, x_array.PtrBoth(), z_array.PtrBoth(), y_array.PtrBoth(), PFFFT_FORWARD) .IgnoreError(); } t1 = UclockSec(); api.pffft_destroy_setup(&s_reg).IgnoreError(); flops = (max_iter * 2) * ((cplx ? 5 : 2.5) * n * log((double)n) / M_LN2); ShowOutput("PFFFT", n, cplx, flops, t0, t1, max_iter); LOG(INFO) << "n = " << n << " SUCCESSFULLY"; } } cplx = !cplx; } while (cplx); return EXIT_SUCCESS; }