// Copyright 2020 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "../sandboxed.h" // NOLINT(build/include) #include "absl/algorithm/container.h" #include "absl/strings/str_join.h" #include "sandboxed_api/sandbox2/util/fileops.h" #include "sandboxed_api/sandbox2/util/path.h" #include "sandboxed_api/vars.h" #include "tiffio.h" // NOLINT(build/include) namespace { struct ChannelLimits { uint8_t min_red; uint8_t max_red; uint8_t min_green; uint8_t max_green; uint8_t min_blue; uint8_t max_blue; uint8_t min_alpha; uint8_t max_alpha; }; constexpr uint32_t kRawTileNumber = 9; constexpr uint32_t kClusterSize = 6; constexpr uint32_t kChannelsInPixel = 3; constexpr uint32_t kTestCount = 3; constexpr uint32_t kImageSize = 128 * 128; constexpr uint32_t kClusterImageSize = 64 * 64; using ClusterData = std::array; constexpr std::array, kTestCount> kClusters = { {{0, {0, 0, 2, 0, 138, 139}}, {64, {0, 0, 9, 6, 134, 119}}, {128, {44, 40, 63, 59, 230, 95}}}}; constexpr std::array, kTestCount> kLimits = { {{0, {15, 18, 0, 0, 18, 41, 255, 255}}, {64, {0, 0, 0, 0, 0, 2, 255, 255}}, {512, {5, 6, 34, 36, 182, 196, 255, 255}}}}; constexpr absl::string_view kClusterErrorFormatStr = "Cluster %d did not match expected results.\n" "Expect:\t%s\n" "Got:\t%s"; constexpr absl::string_view kRgbPixelErrorFormatStr = "Pixel %d did not match expected results.\n" "Got R=%d (expected %d..%d), G=%d (expected %d..%d), " "B=%d (expected %d..%d)"; constexpr absl::string_view kRgbaPixelErrorFormatStr = "Pixel %d did not match expected results.\n" "Got R=%d (expected %d..%d), G=%d (expected %d..%d), " "B=%d (expected %d..%d), A=%d (expected %d..%d)"; absl::Status CheckCluster(uint32_t cluster, const sapi::v::Array& buffer, const ClusterData& expected_cluster) { if (buffer.GetSize() < (cluster + 1) * kClusterSize) { return absl::InternalError("Buffer overrun"); } std::vector target(buffer.GetData() + cluster * kClusterSize, buffer.GetData() + (cluster + 1) * kClusterSize); if (absl::c_equal(absl::MakeSpan(target), expected_cluster)) { return absl::OkStatus(); } // the image is split on 6-bit clusters because it has YCbCr color format return absl::InternalError(absl::StrFormat( kClusterErrorFormatStr, cluster, absl::StrJoin(expected_cluster, "\t"), absl::StrJoin(target, "\t"))); } absl::Status CheckRgbPixel(uint32_t pixel, const ChannelLimits& limits, const sapi::v::Array& buffer) { if (buffer.GetSize() < (pixel + 1) * kChannelsInPixel) { return absl::InternalError("Buffer overrun"); } uint8_t* rgb = buffer.GetData() + pixel * kChannelsInPixel; if (rgb[0] >= limits.min_red && rgb[0] <= limits.max_red && rgb[1] >= limits.min_green && rgb[1] <= limits.max_green && rgb[2] >= limits.min_blue && rgb[2] <= limits.max_blue) { return absl::OkStatus(); } return absl::InternalError(absl::StrFormat( kRgbPixelErrorFormatStr, pixel, rgb[0], limits.min_red, limits.max_red, rgb[1], limits.min_green, limits.max_green, rgb[2], limits.min_blue, limits.max_blue)); } absl::Status CheckRgbaPixel(uint32_t pixel, const ChannelLimits& limits, const sapi::v::Array& buffer) { // RGBA images are upside down - adjust for normal ordering uint32_t adjusted_pixel = pixel % 128 + (127 - (pixel / 128)) * 128; if (buffer.GetSize() <= adjusted_pixel) { return absl::InternalError("Buffer overrun"); } uint32_t rgba = buffer[adjusted_pixel]; if (TIFFGetR(rgba) >= static_cast(limits.min_red) && TIFFGetR(rgba) <= static_cast(limits.max_red) && TIFFGetG(rgba) >= static_cast(limits.min_green) && TIFFGetG(rgba) <= static_cast(limits.max_green) && TIFFGetB(rgba) >= static_cast(limits.min_blue) && TIFFGetB(rgba) <= static_cast(limits.max_blue) && TIFFGetA(rgba) >= static_cast(limits.min_alpha) && TIFFGetA(rgba) <= static_cast(limits.max_alpha)) { return absl::OkStatus(); } return absl::InternalError(absl::StrFormat( kRgbaPixelErrorFormatStr, pixel, TIFFGetR(rgba), limits.min_red, limits.max_red, TIFFGetG(rgba), limits.min_green, limits.max_green, TIFFGetB(rgba), limits.min_blue, limits.max_blue, TIFFGetA(rgba), limits.min_alpha, limits.max_alpha)); } } // namespace std::string GetFilePath(const absl::string_view dir, const absl::string_view filename) { return sandbox2::file::JoinPath(dir, "test", "images", filename); } std::string GetFilePath(const absl::string_view filename) { std::string cwd = sandbox2::file_util::fileops::GetCWD(); auto find = cwd.rfind("build"); std::string project_path; if (find == std::string::npos) { LOG(ERROR) << "Something went wrong: CWD don't contain build dir. " << "Please run tests from build dir or send project dir as a " << "parameter: ./sandboxed /absolute/path/to/project/dir .\n" << "Falling back to using current working directory as root dir.\n"; project_path = cwd; } else { project_path = cwd.substr(0, find); } return sandbox2::file::JoinPath(project_path, "test", "images", filename); } absl::Status LibTIFFMain(const absl::string_view srcfile) { // to use dir and file inside sapi-libtiff, use // sandbox(file) – file only -- or // sandbox(file, dir) -- file and dir -- or // sandbox(nullopt, dir) -- dir only. // file and directory must exist. // all paths must be absolute. TiffSapiSandbox sandbox(srcfile); // initialize sapi vars after constructing TiffSapiSandbox SAPI_RETURN_IF_ERROR(sandbox.Init()); TiffApi api(&sandbox); sapi::v::ConstCStr srcfile_var(srcfile.data()); sapi::v::ConstCStr r_var("r"); absl::StatusOr status_or_tif; SAPI_ASSIGN_OR_RETURN( status_or_tif, api.TIFFOpen(srcfile_var.PtrBefore(), r_var.PtrBefore())); sapi::v::RemotePtr tif(status_or_tif.value()); if (!tif.GetValue()) { return absl::InternalError(absl::StrCat("Could not open ", srcfile)); } sapi::v::UShort h; sapi::v::UShort v; SAPI_ASSIGN_OR_RETURN(int return_value, api.TIFFGetField2(&tif, TIFFTAG_YCBCRSUBSAMPLING, h.PtrAfter(), v.PtrAfter())); if (return_value == 0 || h.GetValue() != 2 || v.GetValue() != 2) { return absl::InternalError("Could not retrieve subsampling tag"); } SAPI_ASSIGN_OR_RETURN(tsize_t sz, api.TIFFTileSize(&tif)); if (sz != kClusterSize * kClusterImageSize) { return absl::InternalError( absl::StrCat("Unexpected TileSize ", sz, ". Expected ", kClusterSize * kClusterImageSize, " bytes")); } sapi::v::Array buffer(sz); // Read a tile in decompressed form, but still YCbCr subsampled SAPI_ASSIGN_OR_RETURN( tsize_t new_sz, api.TIFFReadEncodedTile(&tif, kRawTileNumber, buffer.PtrAfter(), sz)); if (new_sz != sz) { return absl::InternalError(absl::StrCat( "Did not get expected result code from TIFFReadEncodedTile(): ", new_sz, " instead of ", sz)); } absl::Status status; bool cluster_status_ok = true; for (const auto& [id, data] : kClusters) { if (status = CheckCluster(id, buffer, data); !status.ok()) { LOG(ERROR) << "CheckCluster failed:\n" << status.ToString() << '\n'; } cluster_status_ok &= status.ok(); } if (!cluster_status_ok) { return absl::InternalError("One or more clusters failed the check"); } SAPI_ASSIGN_OR_RETURN( return_value, api.TIFFSetFieldU1(&tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB)); if (return_value == 0) { return absl::InternalError("The JPEGCOLORMODE tag cannot be changed"); } SAPI_ASSIGN_OR_RETURN(sz, api.TIFFTileSize(&tif)); if (sz != kChannelsInPixel * kImageSize) { return absl::InternalError( absl::StrCat("Unexpected TileSize ", sz, ". Expected ", kChannelsInPixel * kImageSize, " bytes")); } sapi::v::Array buffer2(sz); SAPI_ASSIGN_OR_RETURN( new_sz, api.TIFFReadEncodedTile(&tif, kRawTileNumber, buffer2.PtrAfter(), sz)); if (new_sz != sz) { return absl::InternalError(absl::StrCat( "Did not get expected result code from TIFFReadEncodedTile(): ", new_sz, " instead of ", sz)); } bool pixel_status_ok = true; for (const auto& [id, data] : kLimits) { if (status = CheckRgbPixel(id, data, buffer2); !status.ok()) { LOG(ERROR) << "CheckRgbPixel failed:\n" << status.ToString() << '\n'; } pixel_status_ok &= status.ok(); } SAPI_RETURN_IF_ERROR(api.TIFFClose(&tif)); SAPI_ASSIGN_OR_RETURN( status_or_tif, api.TIFFOpen(srcfile_var.PtrBefore(), r_var.PtrBefore())); sapi::v::RemotePtr tif2(status_or_tif.value()); if (!tif2.GetValue()) { return absl::InternalError(absl::StrCat("Could not reopen ", srcfile)); } sapi::v::Array rgba_buffer(kImageSize); // read as rgba SAPI_ASSIGN_OR_RETURN( return_value, api.TIFFReadRGBATile(&tif2, 1 * 128, 2 * 128, rgba_buffer.PtrAfter())); if (return_value == 0) { return absl::InternalError("TIFFReadRGBATile() returned failure code"); } // Checking specific pixels from the test data, 0th, 64th and 512th for (const auto& [id, data] : kLimits) { if (status = CheckRgbaPixel(id, data, rgba_buffer); !status.ok()) { LOG(ERROR) << "CheckRgbaPixel failed:\n" << status.ToString() << '\n'; } pixel_status_ok &= status.ok(); } SAPI_RETURN_IF_ERROR(api.TIFFClose(&tif2)); if (!pixel_status_ok) { return absl::InternalError("wrong encoding"); } return absl::OkStatus(); } int main(int argc, char** argv) { gflags::ParseCommandLineFlags(&argc, &argv, true); std::string srcfile; std::string srcfilerel = "quad-tile.jpg.tiff"; if (argc < 2) { srcfile = GetFilePath(srcfilerel); } else { srcfile = GetFilePath(argv[1], srcfilerel); } absl::Status status = LibTIFFMain(srcfile); if (!status.ok()) { LOG(ERROR) << "LibTIFFMain failed with error:\n" << status.ToString() << '\n'; return EXIT_FAILURE; } return EXIT_SUCCESS; }