// Copyright 2020 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include #include "fftpack.h" #include "pffft_sapi.sapi.h" #include "sandboxed_api/util/flag.h" #include "sandboxed_api/vars.h" ABSL_DECLARE_FLAG(string, sandbox2_danger_danger_permit_all); ABSL_DECLARE_FLAG(string, sandbox2_danger_danger_permit_all_and_log); class PffftSapiSandbox : public pffftSandbox { public: std::unique_ptr ModifyPolicy( sandbox2::PolicyBuilder*) override { return sandbox2::PolicyBuilder() .AllowStaticStartup() .AllowOpen() .AllowRead() .AllowWrite() .AllowSystemMalloc() .AllowExit() .AllowSyscalls({ __NR_futex, __NR_close, __NR_getrusage, }) .BuildOrDie(); } }; double UclockSec(void) { return (double)clock() / (double)CLOCKS_PER_SEC; } int array_output_format = 0; void ShowOutput(const char* name, int N, int cplx, float flops, float t0, float t1, int max_iter) { float mflops = flops / 1e6 / (t1 - t0 + 1e-16); if (array_output_format) { if (flops != -1) { printf("|%9.0f ", mflops); } else printf("| n/a "); } else { if (flops != -1) { printf("N=%5d, %s %16s : %6.0f MFlops [t=%6.0f ns, %d runs]\n", N, (cplx ? "CPLX" : "REAL"), name, mflops, (t1 - t0) / 2 / max_iter * 1e9, max_iter); } } fflush(stdout); } int main(int argc, char* argv[]) { // Initialize Google's logging library. google::InitGoogleLogging(argv[0]); gflags::ParseCommandLineFlags(&argc, &argv, true); // Nvalues is a vector keeping the values by which iterates N, its value // representing the input length. More concrete, N is the number of // data points the caclulus is up to (determinating its accuracy). // To show the performance of Fast-Fourier Transformations the program is // testing for various values of N. int Nvalues[] = {64, 96, 128, 160, 192, 256, 384, 5 * 96, 512, 5 * 128, 3 * 256, 800, 1024, 2048, 2400, 4096, 8192, 9 * 1024, 16384, 32768}; int i; LOG(INFO) << "Initializing sandbox...\n"; PffftSapiSandbox sandbox; absl::Status init_status = sandbox.Init(); LOG(INFO) << "Initialization: " << init_status.ToString().c_str() << "\n"; pffftApi api(&sandbox); int cplx = 0; do { for (int N : Nvalues) { const int Nfloat = N * (cplx ? 2 : 1); int Nbytes = Nfloat * sizeof(float); float wrk[2 * Nfloat + 15 * sizeof(float)]; sapi::v::Array wrk_(wrk, 2 * Nfloat + 15 * sizeof(float)); float X[Nbytes], Y[Nbytes], Z[Nbytes]; sapi::v::Array X_(X, Nbytes), Y_(Y, Nbytes), Z_(Z, Nbytes); double t0, t1, flops; int max_iter = 5120000 / N * 4; #ifdef __arm__ max_iter /= 4; #endif int iter, k; for (k = 0; k < Nfloat; ++k) { X[k] = 0; } // FFTPack benchmark { // SIMD_SZ == 4 (returning value of pffft_simd_size()) int max_iter_ = max_iter / 4; if (max_iter_ == 0) max_iter_ = 1; if (cplx) { api.cffti(N, wrk_.PtrBoth()).IgnoreError(); } else { api.rffti(N, wrk_.PtrBoth()).IgnoreError(); } t0 = UclockSec(); for (iter = 0; iter < max_iter_; ++iter) { if (cplx) { api.cfftf(N, X_.PtrBoth(), wrk_.PtrBoth()).IgnoreError(); api.cfftb(N, X_.PtrBoth(), wrk_.PtrBoth()).IgnoreError(); } else { api.rfftf(N, X_.PtrBoth(), wrk_.PtrBoth()).IgnoreError(); api.rfftb(N, X_.PtrBoth(), wrk_.PtrBoth()).IgnoreError(); } } t1 = UclockSec(); flops = (max_iter_ * 2) * ((cplx ? 5 : 2.5) * N * log((double)N) / M_LN2); ShowOutput("FFTPack", N, cplx, flops, t0, t1, max_iter_); } // PFFFT benchmark { sapi::StatusOr s = api.pffft_new_setup(N, cplx ? PFFFT_COMPLEX : PFFFT_REAL); LOG(INFO) << "Setup status is: " << s.status().ToString().c_str() << "\n"; if (!s.ok()) { printf("Sandbox failed.\n"); return 1; } sapi::v::RemotePtr s_reg(s.value()); t0 = UclockSec(); for (iter = 0; iter < max_iter; ++iter) { api.pffft_transform(&s_reg, X_.PtrBoth(), Z_.PtrBoth(), Y_.PtrBoth(), PFFFT_FORWARD) .IgnoreError(); api.pffft_transform(&s_reg, X_.PtrBoth(), Z_.PtrBoth(), Y_.PtrBoth(), PFFFT_FORWARD) .IgnoreError(); } t1 = UclockSec(); api.pffft_destroy_setup(&s_reg).IgnoreError(); flops = (max_iter * 2) * ((cplx ? 5 : 2.5) * N * log((double)N) / M_LN2); ShowOutput("PFFFT", N, cplx, flops, t0, t1, max_iter); LOG(INFO) << "N = " << N << " SUCCESSFULLY\n\n"; } } cplx = !cplx; } while (cplx); return 0; }