/* LodePNG pngdetail Copyright (c) 2005-2020 Lode Vandevenne This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ //g++ pngdetail.cpp lodepng_util.cpp lodepng.cpp -ansi -pedantic -Wall -Wextra -o pngdetail -O3 /* Utility program that shows a lot of information in the console about a PNG file, including color type, text chunks, the names and sizes of all chunks in the image, all the zlib compression blocks and symbols, etc... compression info: ./pngdetail -sfczB image.png everything, 8-bit: ./pngdetail -sPlLA#cfzB7 image.png everything, 16-bit: ./pngdetail -sPlLA@cfzB7 image.png everything except huge output: ./pngdetail -sPlAcfzB image.png */ #include "lodepng.h" #include "lodepng_util.h" #include #include #include #include #include #include #include #include void showHelp() { std::cout << "pngdetail by Lode Vandevenne" << std::endl; std::cout << "version: " << LODEPNG_VERSION_STRING << std::endl; std::cout << "Shows detailed information about a PNG image, its compression and possible corruptions.\n" "Usage: pngdetail [filename] [options]...\n" "Without options shows a default set of stats. With options, shows only selected options.\n" "E.g. 'pngdetail image.png -plc' to show png info, palette info and chunks\n" "Options:\n" "-o: show header summary on one line\n" "-h: show header info\n" "-p: show PNG file info\n" "-e: check the PNG for errors or warnings\n" "-i: show ICC profile details (if any)\n" "-I: show ICC profile in binary (hex)\n" "--format=: hex display mode for -i:\n" " mix: Use printable ASCII characters, hex for others\n" " hex: Use only hex\n" "--size=: render width (not used by hex, hex16 or palette):\n" "-l: show palette (if any)\n" "-s: show color statistics\n" "-r: render the PNG image in terminal (with --mode and --size)\n" "--mode=: render mode for -r:\n" " ascii: Letters ROYLGTCABVMF indicate hue (L=lime, T=turquoise, A=azure, F=fuchsia, ...).\n" " hex: CSS hex notation for every pixel.\n" " hex16: Like hex but shows 16 bits values per channel.\n" " palette: Shows palette index of each pixel, only for palette images.\n" "--size=: render width (not used by hex, hex16 or palette):\n" "-c: show PNG chunks\n" "-C: show PNG chunks (alternate format)\n" "-f: show PNG filters\n" "-z: show Zlib info\n" "-b: show Zlib blocks\n" "-B: show Zlib block symbol counts\n" "-7: show all lz77 values (huge output)\n" "-v: be more verbose\n" "-t: expand long texts\n" "-x: print most integer numbers in hexadecimal (includes e.g. year, num unique colors, ...)\n" "-?, --help: show this help" << std::endl; } enum RenderMode { RM_ASCII, RM_HEX, // CSS RM_HEX16, RM_PAL // palette indices (only rendered if image is palette based) }; // for displaying ICC profile enum HexFormat { HF_HEX, HF_MIX // hex and ascii }; struct Options { bool verbose; bool expand_long_texts; bool show_one_line_summary; //show filesize, pixels and color type on single line bool show_header; // show only info from the IHDR chunk bool show_errors; bool show_icc_details; // show ICC color profile details bool show_icc_hex; // show ICC color profile in full bool show_color_stats; bool show_png_info; //show things like filesize, width, height, palette size, ... bool show_palette; //show all palette values bool show_palette_pixels; //show palette indices of pixels HexFormat hexformat; bool show_render; RenderMode rendermode; int rendersize; bool show_chunks; //show the PNG chunk names and their lengths bool show_chunks2; //alternate form to print chunks bool show_filters; //show the PNG filter of each scanline (not supported for interlaced PNGs currently) bool zlib_info; //show basic zlib info bool zlib_blocks; //show type, tree info, code length summaries and sizes for each zlib block bool zlib_counts; //in addition to the zlib_blocks info, show counts of occurrences all symbols bool zlib_full; //in addition to the zlib_blocks info, show all symbols, one per line (huge output) bool use_hex; //show some sizes or positions in hexadecimal Options() : verbose(false), expand_long_texts(false), show_one_line_summary(false), show_header(false), show_errors(false), show_icc_details(false), show_icc_hex(false), show_color_stats(false), show_png_info(false), show_palette(false), show_palette_pixels(false), hexformat(HF_MIX), show_render(false), rendermode(RM_ASCII), rendersize(80), show_chunks(false), show_chunks2(false), show_filters(false), zlib_info(false), zlib_blocks(false), zlib_counts(false), zlib_full(false), use_hex(false) { } }; unsigned inspect_chunk_by_name(const unsigned char* data, const unsigned char* end, lodepng::State& state, const char type[5]) { const unsigned char* p = lodepng_chunk_find_const(data, end, type); return lodepng_inspect_chunk(&state, p - data, data, end - data); } // Lazy loads the raw file, inspected header or entire image as needed struct Data { std::string filename; std::vector buffer; std::vector pixels; // 16-bit unsigned w; unsigned h; lodepng::State state; unsigned error; bool inspected; Data(const std::string& filename) : filename(filename), error(0), inspected(false) {} // Load the file if not already loaded void loadFile() { if(buffer.empty()) { error = lodepng::load_file(buffer, filename); //load the image file with given filename } else { error = 0; // for reloadpixels, reset error if file was already successfully loaded } } // Load header info (plus a few more nearby light chunks) if not already loaded, and the file if needed void loadInspect() { if(inspected) return; inspected = true; loadFile(); if(error) return; const unsigned char* data = &buffer[0]; error = lodepng_inspect(&w, &h, &state, data, buffer.size()); if(error) return; // end before first IDAT chunk: do not parse more than first part of file for all this. const unsigned char* end = lodepng_chunk_find_const(data, data + buffer.size(), "IDAT"); if(!end) end = data + buffer.size(); // no IDAT, invalid PNG but extract info anyway inspect_chunk_by_name(data, end, state, "PLTE"); if(error) return; inspect_chunk_by_name(data, end, state, "cHRM"); if(error) return; inspect_chunk_by_name(data, end, state, "gAMA"); if(error) return; inspect_chunk_by_name(data, end, state, "sBIT"); if(error) return; inspect_chunk_by_name(data, end, state, "bKGD"); if(error) return; inspect_chunk_by_name(data, end, state, "hIST"); if(error) return; inspect_chunk_by_name(data, end, state, "pHYs"); if(error) return; inspect_chunk_by_name(data, end, state, "iCCP"); if(error) return; } // Load the pixels if not already loaded, and the file if needed void loadPixels() { if(pixels.empty()) reloadPixels(); } void reloadPixels() { loadFile(); if(error) return; inspected = true; state.info_raw.colortype = LCT_RGBA; state.info_raw.bitdepth = 16; pixels.clear(); error = lodepng::decode(pixels, w, h, state, buffer); } }; std::string colorTypeString(LodePNGColorType type) { std::string name; switch(type) { case LCT_GREY: name = "grey"; break; case LCT_RGB: name = "RGB"; break; case LCT_PALETTE: name = "palette"; break; case LCT_GREY_ALPHA: name = "grey+alpha"; break; case LCT_RGBA: name = "RGBA"; break; default: name = "invalid"; break; } std::stringstream ss; ss << type << " (" << name << ")"; return ss.str(); } template T strtoval(const std::string& s) { std::istringstream sstream(s); T val; sstream >> val; return val; } /* Display the names and sizes of all chunks in the PNG file. */ void displayChunkNames(Data& data, const Options& options) { data.loadFile(); if(data.error) return; std::cout << (options.use_hex ? std::hex: std::dec); const std::vector& buffer = data.buffer; std::vector names; std::vector sizes; unsigned error = lodepng::getChunkInfo(names, sizes, buffer); if(error) { if(!names.empty() && names.back() == "IEND" && sizes.back() == 0) { std::cout << "Corruption or superfluous data detected after the IEND chunk" << std::endl; } else { std::cout << "Error while identifying chunks. Listing identified chunks anyway." << std::endl; } } if(options.show_chunks2) { std::cout << "Chunk types: "; for(size_t i = 0; i < names.size(); i++) std::cout << names[i] << " "; std::cout << std::endl; std::cout << "Chunk sizes: "; for(size_t i = 0; i < sizes.size(); i++) std::cout << sizes[i] << " "; std::cout << std::endl; } else { std::cout << "Chunks (type: lengths):"; std::string last_type; for(size_t i = 0; i < names.size(); i++) { if(last_type != names[i]) { std::cout << std::endl; std::cout << " " << names[i] << ": "; } last_type = names[i]; std::cout << sizes[i] << " "; } std::cout << std::endl; } std::map typedict; for(size_t i = 0; i < names.size(); i++) { typedict[names[i]] = true; } if(!error) { if(!typedict["IHDR"]) std::cout << "Error: no IHDR chunk" << std::endl; if(!typedict["IDAT"]) std::cout << "Error: no IDAT chunk" << std::endl; if(!typedict["IEND"]) std::cout << "Error: no IEND chunk" << std::endl; } } void RGBtoHSL(unsigned char r, unsigned char g, unsigned char b, unsigned char* h, unsigned char* s, unsigned char* l) { int cmax = std::max(r, std::max(g, b)); int cmin = std::min(r, std::min(g, b)); if(cmin == cmax) { *h = *s = 0; *l = r; } else { int sum = cmin + cmax; int diff = cmax - cmin; *l = sum / 2; *s = 255 * diff / ((*l < 128) ? sum : (512 - sum)); int hi = (r == cmax) ? (255 * (g - b) / diff) : ((g == cmax) ? (512 + 255 * (b - r) / diff) : (1024 + 255 * (r - g) / diff)); *h = ((hi / 6) & 255); } } /* HCT: Hue, Chroma, Tone: returns a linear combination between a pure hue and a greyscale value. *) Chroma: The linear combination factor: 255 for pure hue, 0 for pure greyscale *) Tone: greyscale to mix with: 0 = black (shade), 255 = white (tint), in between = grey (tone) */ void RGBtoHCT(unsigned char r, unsigned char g, unsigned char b, unsigned char* h, unsigned char* c, unsigned char* t) { int cmax = std::max(r, std::max(g, b)); int cmin = std::min(r, std::min(g, b)); RGBtoHSL(r, g, b, h, c, t); *c = cmax - cmin; *t = *c == 255 ? 0 : 255 * cmin / (255 + cmin - cmax); } // add 32 to get small letter instead of capital char HueToLetter(int h) { char hl = 'R'; // 12 unique hue letters for 30 degree increment hues. if(h < 11 || h >= 244) hl = 'R'; // red else if(h >= 11 && h < 32) hl = 'O'; // orange else if(h >= 32 && h < 53) hl = 'Y'; // yellow else if(h >= 53 && h < 74) hl = 'L'; // lime (officialy "chartreuse" but c is for cyan) else if(h >= 74 && h < 96) hl = 'G'; // green else if(h >= 96 && h < 117) hl = 'T'; // turquoise (officially "spring green" but that name overlaps green) else if(h >= 117 && h < 138) hl = 'C'; // cyan else if(h >= 138 && h < 159) hl = 'A'; // azure else if(h >= 159 && h < 181) hl = 'B'; // blue else if(h >= 181 && h < 202) hl = 'V'; // violet else if(h >= 202 && h < 223) hl = 'M'; // magenta else if(h >= 223 && h < 244) hl = 'F'; // fuchsia (officially "rose" but r is for red) return hl; } char lightnessToLetter(int l) { int c = ' '; if(l < 16) c = ' '; else if(l < 48) c = '.'; else if(l < 80) c = ':'; else if(l < 112) c = '-'; else if(l < 144) c = '!'; else if(l < 176) c = '*'; else if(l < 208) c = '+'; // The + looks denser than the * in a terminal... else if(l < 240) c = '='; else c = '#'; return c; } // Both v and result are assumed in range 0-255 // range is the size of an individual bucket. A value in roughly range [-range/2, range/2) can get added to v. // E.g. if there are 12 hue letters, give 255/12 = 21 as range static inline int applyDither(int v, int range, int x, int y, bool wrap) { // ordered dithering pattern; ranges from 0-15, so multiply with 17 to have 0-255 static const int pattern[16] = {0,8,2,10, 12,4,14,6, 3,11,1,9, 15,7,13,5}; int d = pattern[(x & 3) + 4 * (y & 3)] * 17 - 128; // range: -128 to 127 if(wrap) return (v + d * range / 256) & 255; else return std::max(0, std::min(255, v + d * range / 256)); } // x and y are to use for dithering // inverted inverts black and white, for in case black text on white background is used (by default it assumes white text on black background) char RGBtoLetter(unsigned char r, unsigned char g, unsigned char b, unsigned char a, unsigned x, unsigned y, bool dither = true, bool inverted = false) { if(a < 255) { r = a * r / 255; g = a * g / 255; b = a * b / 255; } if(dither) { unsigned char h, c, t; RGBtoHCT(r, g, b, &h, &c, &t); int l = (std::max(std::max(r, g), b) + std::min(std::min(r, g), b)) / 2; if(inverted) { l = 255 - l; t = 255 - t; } if(applyDither(c, 254, x, y, false) >= 128) { char letter = HueToLetter(applyDither(h, 21, x, y, true)); bool smallcaps = applyDither(l, 64, x+2, y+2, false) < 80; return letter + (smallcaps ? 32 : 0); } else return lightnessToLetter(applyDither(l, 31, x, y, false)); } else { unsigned char h, s, l; RGBtoHSL(r, g, b, &h, &s, &l); if(inverted) l = 255 - l; char hl = HueToLetter(h); char c = ' '; if(l < 24 || l > 232 || s < 64) { c = lightnessToLetter(l); } else { if(l < 128) c = hl + 32; else c = hl; } return c; } } std::vector rescale(const std::vector& in, int w0, int h0, int w1, int h1, bool smooth) { int numchannels = in.size() / (w0 * h0); std::vector out(w1 * h1 * numchannels); if(smooth) { // box filter. std::vector temp(w1 * h0 * numchannels); for (int c = 0; c < numchannels; c++) { for (int x = 0; x < w1; x++) { float xaf = x * 1.0 * w0 / w1; float xbf = (x + 1.0) * w0 / w1; int xa = (int)xaf; int xb = (int)xbf; double norm = 1.0 / (xbf - xaf); xaf -= std::floor(xaf); xbf -= std::floor(xbf); for (int y = 0; y < h0; y++) { int index1 = x * numchannels + y * w1 * numchannels; double val = 0; for(int x0 = xa; x0 <= xb; x0++) { int index0 = x0 * numchannels + y * w0 * numchannels; double v = 1; if(x0 == xa) v -= xaf; if(x0 == xb) v -= (1 - xbf); val += v * in[index0 + c]; } temp[index1 + c] = val * norm; } } for (int y = 0; y < h1; y++) { float yaf = y * 1.0 * h0 / h1; float ybf = (y + 1.0) * h0 / h1; int ya = (int)yaf; int yb = (int)ybf; double norm = 1.0 / (ybf - yaf); yaf -= std::floor(yaf); ybf -= std::floor(ybf); for (int x = 0; x < w1; x++) { int index1 = x * numchannels + y * w1 * numchannels; double val = 0; for(int y0 = ya; y0 <= yb; y0++) { int index0 = x * numchannels + y0 * w1 * numchannels; double v = 1; if(y0 == ya) v -= yaf; if(y0 == yb) v -= (1 - ybf); val += v * temp[index0 + c]; } out[index1 + c] = val * norm; } } } } else { for(int y = 0; y < h1; y++) { int y0 = (int)((y + 0.5) * h0 / h1 - 0.5); for (int x = 0; x < w1; x++) { int x0 = (int)((x + 0.5) * w0 / w1 - 0.5); int index0 = x0 * numchannels + y0 * w0 * numchannels; int index1 = x * numchannels + y * w1 * numchannels; for (int c = 0; c < numchannels; c++) { out[index1 + c] = in[index0 + c]; } } } } return out; } /* Show ASCII art preview of the image image is given in 16-bit big endian */ void displayAsciiArt(const std::vector& image, unsigned w, unsigned h, unsigned asciiw) { const std::vector* imagep = ℑ std::vector image2; if(asciiw < w) { unsigned w2 = asciiw; unsigned h2 = h * w2 / w; image2 = rescale(image, w, h, w2, h2, true); imagep = &image2; w = w2; h = h2; } if(w > 0 && h > 0) { std::cout << "ASCII Art Preview: " << std::endl; unsigned h2 = 1 + ((h - 1) * 4) / 7; //compensate for non-square characters in terminal std::cout << '+'; for(unsigned x = 0; x < w; x++) std::cout << '-'; std::cout << '+' << std::endl; for(unsigned y = 0; y < h2; y++) { std::cout << "|"; unsigned y2 = y * h / h2; for(unsigned x = 0; x < w; x++) { int r = (*imagep)[y2 * w * 8 + x * 8 + 0]; int g = (*imagep)[y2 * w * 8 + x * 8 + 2]; int b = (*imagep)[y2 * w * 8 + x * 8 + 4]; int a = (*imagep)[y2 * w * 8 + x * 8 + 6]; char symbol = RGBtoLetter(r, g, b, a, x, y, true, false); std::cout << (char)symbol; } std::cout << "|"; std::cout << std::endl; } std::cout << '+'; for(unsigned x = 0; x < w; x++) std::cout << '-'; std::cout << '+' << std::endl; } } //sixteen: print 16 bits per pixel //alpha: print alpha channel //input image ALWAYS given in 16-bit per channel RGBA void displayColorsHex(const std::vector& image, unsigned w, unsigned h, bool sixteen) { std::ios_base::fmtflags flags = std::cout.flags(); if(w > 0 && h > 0) { std::cout << "Colors (CSS RGBA hex format):" << std::endl; for(unsigned y = 0; y < h; y++) { std::cout.flags(flags); //print line numbers in hex or dec whatever it originally was std::cout << y << ":"; for(unsigned x = 0; x < w; x++) { size_t index = y * w * 8 + x * 8; if (sixteen) { int r = image[index + 0] * 256 + image[index + 1]; int g = image[index + 2] * 256 + image[index + 3]; int b = image[index + 4] * 256 + image[index + 5]; int a = image[index + 6] * 256 + image[index + 7]; std::cout << std::hex << std::setfill('0') << " #" << std::setw(4) << r << std::setw(4) << g << std::setw(4) << b << std::setw(4) << a; } else { int r = image[index + 0]; int g = image[index + 2]; int b = image[index + 4]; int a = image[index + 6]; std::cout << std::hex << std::setfill('0') << " #" << std::setw(2) << r << std::setw(2) << g << std::setw(2) << b << std::setw(2) << a; } } std::cout << std::endl; } } std::cout.flags(flags); } /* Show the filtertypes of each scanline in this PNG image. */ void displayFilterTypes(Data& data, const Options& options) { std::cout << (options.use_hex ? std::hex: std::dec); data.loadFile(); if(data.error) return; const std::vector& buffer = data.buffer; std::vector > types; unsigned error = lodepng::getFilterTypesInterlaced(types, buffer); if(error) { std::cout << "Error getting filter types" << std::endl; return; } if(types.size() == 7) { std::cout << "Filter types (Adam7 interlaced):" << std::endl; for(int j = 0; j < 7; j++) { std::cout << " Pass " << (j + 1) << ": "; for(size_t i = 0; i < types[j].size(); i++) { std::cout << (int)(types[j][i]); } std::cout << std::endl; } } else { std::cout << "Filter types: "; for(size_t i = 0; i < types[0].size(); i++) { std::cout << (int)(types[0][i]); } std::cout << std::endl; } } //image type MUST be palette void displayPalette(Data& data, const Options& options) { data.loadInspect(); if(data.error) return; std::cout << (options.use_hex ? std::hex: std::dec); const LodePNGInfo& info = data.state.info_png; const LodePNGColorMode& color = info.color; std::cout << "Palette size: " << color.palettesize << std::endl; std::cout << "Palette colors: "; std::ios_base::fmtflags flags = std::cout.flags(); std::cout << std::hex << std::setfill('0'); for(size_t i = 0; i < color.palettesize; i++) { unsigned char* p = &color.palette[i * 4]; std::cout << "#" << std::setw(2) << (int)p[0] << std::setw(2) << (int)p[1] << std::setw(2) << (int)p[2] << std::setw(2) << (int)p[3] << " "; } std::cout.flags(flags); std::cout << std::endl; } //image type MUST be palette void displayPalettePixels(const std::vector& buffer, const Options& options) { unsigned w, h; lodepng::State state; std::vector out; std::cout << (options.use_hex ? std::hex: std::dec); state.decoder.color_convert = 0; lodepng::decode(out, w, h, state, buffer); if(state.info_png.color.colortype == LCT_PALETTE) { if (options.show_color_stats) { std::vector count(256, 0); size_t outofbounds = 0; for(size_t i = 0; i < w * h; i++) { int value = lodepng::getPaletteValue(&out[0], i, state.info_raw.bitdepth); count[value]++; if(value >= (int)state.info_raw.palettesize) outofbounds++; } std::cout << "Palette count: "; for(size_t i = 0; i < state.info_raw.palettesize; i++) { std::cout << count[i] << " "; } std::cout << std::endl; if(outofbounds > 0) std::cout << "Out of bounds palette values: " << outofbounds << std::endl; } std::cout << "Pixel palette indices:" << std::endl; for(size_t i = 0; i < w * h; i++) { int value = lodepng::getPaletteValue(&out[0], i, state.info_raw.bitdepth); std::cout << value << ", "; if(i % w == w - 1) std::cout << std::endl; } } else { std::cout << "Pixel palette indices: not shown, not a palette image\n" << std::endl; } } void printZlibInfo(Data& data, const Options& options) { data.loadFile(); if(data.error) return; const std::vector& in = data.buffer; std::cout << (options.use_hex ? std::hex: std::dec); std::vector zlibinfo; lodepng::extractZlibInfo(zlibinfo, in); if(options.zlib_info) { //std::cout << "Zlib info: " << std::endl; size_t compressed = 0; size_t uncompressed = 0; std::vector boundaries_compressed; std::vector boundaries_uncompressed; for(size_t i = 0; i < zlibinfo.size(); i++) { compressed += zlibinfo[i].compressedbits / 8; uncompressed += zlibinfo[i].uncompressedbytes; boundaries_compressed.push_back(compressed); boundaries_uncompressed.push_back(uncompressed); } std::cout << "IDAT zlib info: " << compressed << std::endl; std::cout << "Compressed size: " << compressed << std::endl; std::cout << "Uncompressed size: " << uncompressed << std::endl; std::cout << "Amount of zlib blocks: " << zlibinfo.size() << std::endl; if(zlibinfo.size() > 1) { std::cout << "Block sizes (uncompressed): "; for(size_t i = 0; i < zlibinfo.size(); i++) std::cout << zlibinfo[i].uncompressedbytes << " "; std::cout << std::endl; std::cout << "Block sizes (compressed): "; for(size_t i = 0; i < zlibinfo.size(); i++) std::cout << (zlibinfo[i].compressedbits / 8) << " "; std::cout << std::endl; std::cout << "Block boundaries (uncompressed): "; for(size_t i = 0; i + 1 < boundaries_uncompressed.size(); i++) std::cout << boundaries_uncompressed[i] << " "; std::cout << std::endl; std::cout << "Block boundaries (compressed): "; for(size_t i = 0; i + 1 < boundaries_compressed.size(); i++) std::cout << boundaries_compressed[i] << " "; std::cout << std::endl; } } if(options.zlib_blocks) { for(size_t i = 0; i < zlibinfo.size(); i++) { const lodepng::ZlibBlockInfo& info = zlibinfo[i]; std::cout << "Zlib block " << i << ":" << std::endl; std::cout << " block type: " << info.btype << std::endl; size_t compressedsize = info.compressedbits / 8; size_t uncompressedsize = info.uncompressedbytes; std::cout << " block compressed: " << compressedsize << " (" << compressedsize / 1024 << "K) (" << info.compressedbits << " bits)" << std::endl; std::cout << " block uncompressed: " << uncompressedsize << " (" << uncompressedsize / 1024 << "K)" << std::endl; if(info.btype > 2) { std::cout << "Error: Invalid Block Type" << std::endl; return; } if(info.btype == 2) { std::cout << " encoded trees size: " << info.treebits / 8 << " (" << info.treebits << " bits)" << std::endl; std::cout << " HLIT: " << info.hlit << std::endl; std::cout << " HDIST: " << info.hdist << std::endl; std::cout << " HCLEN: " << info.hclen << std::endl; std::cout << std::hex; std::cout << " code length code lengths: "; for(size_t j = 0; j < 19; j++) std::cout << info.clcl[j]; std::cout << std::endl; if(!options.use_hex) std::cout << std::dec; if(options.zlib_full) { for(size_t j = 0; j < info.treecodes.size(); j++) { int code = info.treecodes[j]; if(code < 17) { std::cout << " tree: " << code << std::endl; } else { j++; std::cout << " tree: " << code << " rep: " << info.treecodes[j] << std::endl; } } } std::cout << std::hex; std::cout << " lit code lengths 0-127 : "; for(size_t j = 0; j < 128; j++) std::cout << info.litlenlengths[j]; std::cout << std::endl; std::cout << " lit code lengths 128-255: "; for(size_t j = 128; j < 256; j++) std::cout << info.litlenlengths[j]; std::cout << std::endl; std::cout << " end code length : "; std::cout << info.litlenlengths[256]; std::cout << std::endl; std::cout << " len code lengths : "; for(size_t j = 257; j < 288; j++) std::cout << info.litlenlengths[j]; std::cout << std::endl; std::cout << " dist code lengths : "; for(size_t j = 0; j < 32; j++) std::cout << info.distlengths[j]; std::cout << std::endl; if(!options.use_hex) std::cout << std::dec; } if(info.btype != 0) { std::cout << " code counts: lit: " << info.numlit << ", len/dist: " << info.numlen << ", total: " << (info.numlit + info.numlen + 1) << ", with dists: " << (info.numlit + 2 * info.numlen + 1) << std::endl; if(options.zlib_full) { for(size_t j = 0; j < info.lz77_lcode.size(); j++) { int symbol = info.lz77_lcode[j]; if(symbol == 256) { std::cout << " end" << std::endl; } else if(symbol < 256) { std::cout << " lit: " << symbol << std::endl; } else { std::cout << " len: " << info.lz77_lvalue[j] << ", dist: " << info.lz77_dvalue[j] << std::endl; } } } if(options.zlib_counts) { std::vector ll_count(288, 0); std::vector d_count(32, 0); for(size_t j = 0; j < info.lz77_lcode.size(); j++) { int symbol = info.lz77_lcode[j]; if(symbol <= 256) { ll_count[symbol]++; } else { ll_count[symbol]++; d_count[info.lz77_dcode[j]]++; } } std::cout << " lit code 0-63 counts : "; for(size_t j = 0; j < 64; j++) std::cout << ll_count[j] << " "; std::cout << std::endl; std::cout << " lit code 64-127 counts : "; for(size_t j = 64; j < 128; j++) std::cout << ll_count[j] << " "; std::cout << std::endl; std::cout << " lit code 128-191 counts: "; for(size_t j = 128; j < 192; j++) std::cout << ll_count[j] << " "; std::cout << std::endl; std::cout << " lit code 192-255 counts: "; for(size_t j = 192; j < 256; j++) std::cout << ll_count[j] << " "; std::cout << std::endl; std::cout << " end code count : "; std::cout << ll_count[256] << " "; std::cout << std::endl; std::cout << " len code counts : "; for(size_t j = 257; j < 288; j++) std::cout << ll_count[j] << " "; std::cout << std::endl; std::cout << " dist code counts : "; for(size_t j = 0; j < 32; j++) std::cout << d_count[j] << " "; std::cout << std::endl; } } } } } // returns number of unique RGBA colors in the image // also fills unique r, g, b, a counts in the output parameters // the input image is in 16-bit per channel color, so 8 chars per pixel size_t countColors(std::vector image, unsigned w, unsigned h, size_t* ro, size_t* go, size_t* bo, size_t* ao) { typedef std::pair, std::pair > RGBA; std::map rgbam; //std::map rgbam; std::vector rm(65536, 0); std::vector gm(65536, 0); std::vector bm(65536, 0); std::vector am(65536, 0); for(unsigned y = 0; y < h; y++) { for(unsigned x = 0; x < w; x++) { unsigned short r = 256 * image[y * 8 * w + x * 8 + 0] + image[y * 8 * w + x * 8 + 1]; unsigned short g = 256 * image[y * 8 * w + x * 8 + 2] + image[y * 8 * w + x * 8 + 3]; unsigned short b = 256 * image[y * 8 * w + x * 8 + 4] + image[y * 8 * w + x * 8 + 5]; unsigned short a = 256 * image[y * 8 * w + x * 8 + 6] + image[y * 8 * w + x * 8 + 7]; RGBA rgba(std::make_pair(r, g), std::make_pair(b, a)); //uint64_t rgba = (uint64_t)r + ((uint64_t)g << 16) + ((uint64_t)b << 32) + ((uint64_t)a << 48); rgbam[rgba]++; rm[r] = 1; gm[g] = 1; bm[b] = 1; am[a] = 1; } } *ro = *go = *bo = *ao = 0; for(size_t i = 0; i < rm.size(); i++) { *ro += rm[i]; *go += gm[i]; *bo += bm[i]; *ao += am[i]; } return rgbam.size(); } void showError(Data& data, const Options& options) { std::cout << (options.use_hex ? std::hex: std::dec); std::string prefix = (options.use_hex ? "0x": ""); if(!data.error) { std::cout << "No error" << std::endl; } std::cout << "Decoding error " << prefix << data.error << ": " << lodepng_error_text(data.error) << std::endl; } void loadWithErrorRecovery(Data& data, const Options& options, bool show_errors_mode) { (void)options; unsigned& error = data.error; lodepng::State& state = data.state; data.loadPixels(); if(show_errors_mode) { if(!error) std::cout << "No errors or warnings" << std::endl; return; } // In case of checksum errors and some other ignorable errors, report it but ignore it and retry while(error) { // Not showing regular error here, is shown at end of program. unsigned error2 = error; if(error == 57) { showError(data, options); if(!show_errors_mode) std::cerr << "Ignoring the error: enabling ignore_crc" << std::endl; state.decoder.ignore_crc = 1; data.reloadPixels(); } else if(error == 58) { showError(data, options); if(!show_errors_mode) std::cerr << "Ignoring the error: enabling ignore_adler32" << std::endl; state.decoder.zlibsettings.ignore_adler32 = 1; data.reloadPixels(); } else if(error == 69) { showError(data, options); if(!show_errors_mode) std::cerr << "Ignoring the error: enabling ignore_critical" << std::endl; state.decoder.ignore_critical = 1; data.reloadPixels(); } else if(error == 30 || error == 63) { showError(data, options); if(!show_errors_mode) std::cerr << "Ignoring the error: enabling ignore_end" << std::endl; state.decoder.ignore_end = 1; data.reloadPixels(); } else { showError(data, options); if(!show_errors_mode) std::cerr << "This error is unrecoverable" << std::endl; break; // other error that we cannot ignore } if(!show_errors_mode) if(error == 0) std::cerr << "Successfully ignored the error" << std::endl; if(error == error2) { if(!show_errors_mode) std::cerr << "Failed to ignore the error" << std::endl; break; // avoid infinite loop if ignoring did not fix the error code } } if(show_errors_mode) { if(!error) std::cout << "The error is recoverable" << std::endl; else std::cout << "The error is not recoverable" << std::endl; } } void showSingleLineSummary(Data& data, const Options& options) { data.loadInspect(); if(data.error) return; std::cout << (options.use_hex ? std::hex: std::dec); std::cout << "Filesize: " << data.buffer.size() << " (" << data.buffer.size() / 1024 << "K)" << ", "; std::cout << data.w << "x" << data.h << ", "; std::cout << "Color: " << colorTypeString(data.state.info_png.color.colortype) << ", " << data.state.info_png.color.bitdepth << " bit" << std::endl; } static unsigned getICCUint16(const unsigned char* icc, size_t size, size_t pos) { if (pos + 2 > size) return 0; return (unsigned)((icc[pos] << 8) | (icc[pos + 1])); } static unsigned getICCUint32(const unsigned char* icc, size_t size, size_t pos) { if (pos + 4 > size) return 0; return (unsigned)((icc[pos] << 24) | (icc[pos + 1] << 16) | (icc[pos + 2] << 8) | (icc[pos + 3] << 0)); } static int getICCInt32(const unsigned char* icc, size_t size, size_t pos) { if (pos + 4 > size) return 0; return (int)((icc[pos] << 24) | (icc[pos + 1] << 16) | (icc[pos + 2] << 8) | (icc[pos + 3] << 0)); } // Signed static float getICC15Fixed16(const unsigned char* icc, size_t size, size_t pos) { return getICCInt32(icc, size, pos) / 65536.0; } // Unsigned static float getICC16Fixed16(const unsigned char* icc, size_t size, size_t pos) { return getICCUint32(icc, size, pos) / 65536.0; } static std::string printableICCWord(const unsigned char* icc, size_t size, size_t pos) { if (pos + 4 > size) { return "out of range"; } std::string result; for (int i = 0; i < 4; i++) { char c = icc[pos + i]; result += ((c >= 32 && c < 127) ? c : '?'); } return result; } void printICCDetails(const unsigned char* icc, size_t size, const std::string& indent) { // 128 for header, 4 for num tags if(size < 132) { std::cout << indent << "Invalid ICC: too small to contain header" << std::endl; return; } if(printableICCWord(icc, size, 36) != "acsp") { std::cout << indent << "Invalid ICC: does not contain signature \"acsp\"" << std::endl; return; } std::cout << indent << "profile size: " << getICCUint32(icc, size, 0) << std::endl; std::cout << indent << "CMM type: " << printableICCWord(icc, size, 4) << std::endl; uint32_t version = getICCUint32(icc, size, 8); uint16_t version_major = (version >> 24) & 255; uint16_t version_minor = (version >> 20) & 15; uint16_t version_bugfix = (version >> 16) & 15; std::cout << indent << "version: " << version_major << "." << version_minor << "." << version_bugfix << std::endl; std::cout << indent << "device class: " << printableICCWord(icc, size, 12) << std::endl; std::cout << indent << "input space: \"" << printableICCWord(icc, size, 16) << "\", "; std::cout << "output space: \"" << printableICCWord(icc, size, 20) << "\"" << std::endl; std::cout << indent; printf("date: %02d-%02d-%02dT%02d:%02d:%02d\n", getICCUint16(icc, size, 24), getICCUint16(icc, size, 26), getICCUint16(icc, size, 28), getICCUint16(icc, size, 30), getICCUint16(icc, size, 32), getICCUint16(icc, size, 34)); std::cout << indent << "signature: " << printableICCWord(icc, size, 36) << std::endl; std::cout << indent << "platform: " << printableICCWord(icc, size, 40) << std::endl; std::cout << indent << "flags: " << getICCUint32(icc, size, 44) << std::endl; std::cout << indent << "device manufacturer: " << printableICCWord(icc, size, 48) << ", "; std::cout << "device model: " << printableICCWord(icc, size, 52) << ", "; std::cout << "device attributes: " << getICCUint32(icc, size, 56) << " " << getICCUint32(icc, size, 60) << std::endl; std::cout << indent << "rendering intent: " << getICCUint32(icc, size, 64) << std::endl; float pcsx = getICC15Fixed16(icc, size, 68); float pcsy = getICC15Fixed16(icc, size, 72); float pcsz = getICC15Fixed16(icc, size, 76); float pcsxyz = pcsx + pcsy + pcsz; std::cout << indent << "xyz illuminant: X:" << pcsx << ", Y:" << pcsy << ", Z:" << pcsz << ", xy:" << (pcsx / pcsxyz) << "," << (pcsy / pcsxyz) << std::endl; std::cout << indent << "creator: " << printableICCWord(icc, size, 80) << std::endl; // The md5 is present in v2.4 and above profiles, but it's always shown anyway. Those // bytes are normally all zero for older versions. std::cout << indent; printf("md5: %08x%08x%08x%08x\n", getICCUint32(icc, size, 84), getICCUint32(icc, size, 88), getICCUint32(icc, size, 92), getICCUint32(icc, size, 96)); size_t numtags = getICCUint32(icc, size, 128); std::cout << indent << "num icc tags: " << numtags << std::endl; if(size < 128 + 4 + numtags * 12) { std::cout << indent << "Invalid ICC: too small to contain tag descriptions" << std::endl; return; } for(size_t i = 0; i < numtags; i++) { size_t pos = 132 + i * 12; std::cout << indent << "icc tag: \"" << printableICCWord(icc, size, pos) << "\""; size_t offset = getICCUint32(icc, size, pos + 4); size_t tagsize = getICCUint32(icc, size, pos + 8); std::cout << ", offset: " << offset << ", size: " << tagsize; if(offset + tagsize > size || tagsize < 4) { std::cout << std::endl << indent << "Invalid ICC: tag out of range" << std::endl; return; } std::string datatype = printableICCWord(icc, size, offset); std::cout << ", datatype: \"" << datatype << "\""; if(datatype == "XYZ ") { float x = getICC15Fixed16(icc, size, offset + 8); float y = getICC15Fixed16(icc, size, offset + 12); float z = getICC15Fixed16(icc, size, offset + 16); float xyz = x + y + z; std::cout << ", X:" << x << ", Y:" << y << ", Z:" << z; if(xyz) std::cout << ", xy:" << (x / xyz) << "," << (y / xyz); } if(datatype == "curv") { size_t lutsize = getICCUint32(icc, size, offset + 8); std::cout << ", lookup table size: " << lutsize; if(lutsize == 1 && offset + 14 <= size) { std::cout << " (gamma: " << (getICCUint16(icc, size, offset + 12) / 256.0) << ")"; } if(lutsize == 0) std::cout << " (linear)"; } if(datatype == "para") { unsigned type = getICCUint16(icc, size, offset + 8); float gamma = getICC15Fixed16(icc, size, offset + 12); int numparams = (type == 4) ? 7 : ((type >= 1 && type <= 3) ? (type + 1) : 0); std::cout << " type: " << type << ", gamma: " << gamma; if(numparams > 0) { std::cout << ", params: "; for(int j = 0; j < numparams; j++) { if(j > 0) std::cout << ", "; std::cout << getICC15Fixed16(icc, size, offset + 16 + j * 4); } } } if(datatype == "sf32") { std::cout << ":"; for(size_t j = 8; j < tagsize; j += 4) { float v = getICC15Fixed16(icc, size, offset + j); std::cout << " " << v; } } if(datatype == "chrm") { size_t numchannels = getICCUint16(icc, size, offset + 8); std::cout << ": n:" << numchannels << " phosphor:" << getICCUint16(icc, size, offset + 10); for(size_t j = 0; j < numchannels; j++) { std::cout << " xy:" << getICC16Fixed16(icc, size, offset + 12 + j * 8) << "," << getICC16Fixed16(icc, size, offset + 12 + j * 8 + 4); } } if(datatype == "text" || datatype == "mluc" || datatype == "desc") { // TODO: this is a bit of a simplification of the parse for now, e.g. // ignoring UTF-16, instead implicitely skipping non-ASCII bytes, and // potentially printing things multiple times in a row if multiple // variants are in desc or mluc. std::cout << ": "; for(size_t j = (datatype == "mluc" ? 28 : 8); j < tagsize; j++) { char c = icc[offset + j]; if(c >= 32 && c < 127) std::cout << c; } } std::cout << std::endl; } } void showHeaderInfo(Data& data, const Options& options) { data.loadInspect(); if(data.error) return; std::cout << (options.use_hex ? std::hex: std::dec); const LodePNGInfo& info = data.state.info_png; const LodePNGColorMode& color = info.color; if(options.show_header) { std::cout << "Filesize: " << data.buffer.size() << " (" << data.buffer.size() / 1024 << "K)" << std::endl; std::cout << "Width: " << data.w << std::endl; std::cout << "Height: " << data.h << std::endl; if(options.verbose) { double bpp = data.buffer.size() / (double)(data.w * data.h); std::cout << "Compressed bpp: " << bpp << std::endl; } std::cout << "Interlace method: " << info.interlace_method << std::endl; if(options.verbose) { std::cout << "Compression method: " << info.compression_method << std::endl; std::cout << "Filter method: " << info.filter_method << std::endl; } std::cout << "Color type: " << colorTypeString(color.colortype) << std::endl; std::cout << "Bit depth: " << color.bitdepth << std::endl; if(options.verbose) { std::cout << "Bits per pixel: " << lodepng_get_bpp(&color) << std::endl; std::cout << "Channels per pixel: " << lodepng_get_channels(&color) << std::endl; std::cout << "Is greyscale type: " << lodepng_is_greyscale_type(&color) << std::endl; std::cout << "Can have alpha: " << lodepng_can_have_alpha(&color) << std::endl; std::cout << "Has color key: " << color.key_defined << std::endl; } } if(options.show_png_info) { if (color.colortype == LCT_PALETTE) { std::cout << "Palette size: " << color.palettesize << std::endl; } if(color.key_defined) { std::cout << "Color key rgb: " << color.key_r << ", " << color.key_g << ", " << color.key_b << std::endl; } if(info.background_defined) { if(color.colortype == LCT_PALETTE) { std::cout << "Background index: " << info.background_r << std::endl; } else { std::cout << "Background rgb: " << info.background_r << ", " << info.background_g << ", " << info.background_b << std::endl; } } if(info.gama_defined) { std::cout << "gAMA defined: " << info.gama_gamma << " (" << (info.gama_gamma / 100000.0) << ", " << (100000.0 / info.gama_gamma) << ")" << std::endl; } if(info.chrm_defined) { std::cout << "cHRM defined: w: " << (info.chrm_white_x / 100000.0) << " " << (info.chrm_white_y / 100000.0) << ", r: " << (info.chrm_red_x / 100000.0) << " " << (info.chrm_red_y / 100000.0) << ", g: " << (info.chrm_green_x / 100000.0) << " " << (info.chrm_green_y / 100000.0) << ", b: " << (info.chrm_blue_x / 100000.0) << " " << (info.chrm_blue_y / 100000.0) << std::endl; } if(info.srgb_defined) { std::cout << "sRGB defined: rendering intent: " << info.srgb_intent << std::endl; } if(info.iccp_defined) { std::cout << "iCCP defined: (" << info.iccp_profile_size << " bytes), name: " << info.iccp_name << std::endl; if(options.verbose && !options.show_icc_details && !options.show_icc_hex) { std::cout << "Use -i or -I to show ICC profile details or hex" << std::endl; } } } if(info.iccp_defined && options.show_icc_details) { if(!options.show_header) { std::cout << "ICC profile details (" << info.iccp_profile_size << " bytes), PNG name: " << info.iccp_name << std::endl; } printICCDetails(info.iccp_profile, info.iccp_profile_size, " "); std::cout << "end of ICC profile" << std::endl; } if(info.iccp_defined && options.show_icc_hex) { for(size_t i = 0; i < info.iccp_profile_size; i++) { unsigned char c = info.iccp_profile[i]; if(c > 32 && c < 127 && options.hexformat == HF_MIX) printf(" %c ", c); else printf("%02x ", c); if(i % 32 == 31 && i + 1 != info.iccp_profile_size) std::cout << std::endl; } std::cout << std::endl; } if(options.show_png_info) { if(options.verbose) std::cout << "Physics defined: " << info.phys_defined << std::endl; if(info.phys_defined) { std::cout << "Physics: X: " << info.phys_x << ", Y: " << info.phys_y << ", unit: " << info.phys_unit << std::endl; } } } // shortens the text unless options.expand_long_texts is true std::string shortenText(const std::string& text, const Options& options) { if(options.expand_long_texts) return text; size_t maxlen = 512; size_t maxnl = options.verbose ? 5 : 1; size_t numnl = 0; // amount of newlines for(size_t i = 0; i < text.size(); i++) { if(text[i] == 10) numnl++; if(numnl >= maxnl) { maxlen = i - 1; break; } } if(text.size() < maxlen) return text; return text.substr(0, maxlen) + (numnl > 1 ? "\n" : "") + "... [TEXT SNIPPED! use -t to expand long text]"; } // A bit more PNG info, which is from chunks that can come after IDAT. showHeaderInfo shows most other stuff. void showPNGInfo(Data& data, const Options& options) { loadWithErrorRecovery(data, options, false); if(data.error) return; std::cout << (options.use_hex ? std::hex: std::dec); const LodePNGInfo& info = data.state.info_png; if(options.verbose) std::cout << "Texts: " << info.text_num << std::endl; for(size_t i = 0; i < info.text_num; i++) { std::cout << "Text (" << (strlen(info.text_strings[i])) << " bytes): " << info.text_keys[i] << ": " << shortenText(info.text_strings[i], options) << std::endl; } if(options.verbose) std::cout << "International texts: " << info.itext_num << std::endl; for(size_t i = 0; i < info.itext_num; i++) { std::cout << "Text (" << (strlen(info.itext_strings[i])) << " bytes): " << info.itext_keys[i] << ", " << info.itext_langtags[i] << ", " << info.itext_transkeys[i] << ": " << shortenText(info.itext_strings[i], options) << std::endl; } if(options.verbose) std::cout << "Time defined: " << info.time_defined << std::endl; if(info.time_defined) { const LodePNGTime& time = info.time; printf("time: %02d-%02d-%02dT%02d:%02d:%02d\n", time.year, time.month, time.day, time.hour, time.minute, time.second); } } void showColorStats(Data& data, const Options& options) { std::cout << (options.use_hex ? std::hex: std::dec); std::vector& image = data.pixels; unsigned& w = data.w; unsigned& h = data.h; data.loadPixels(); if(data.error) return; // TODO: move to show color stats function if(options.verbose) std::cout << "Num pixels: " << w * h << std::endl; size_t rc, gc, bc, ac; std::cout << "Num unique colors: " << countColors(image, w, h, &rc, &gc, &bc, &ac); std::cout << " (r: " << rc << ", g: " << gc << ", b: " << bc << ", a: " << ac << ")"; std::cout << std::endl; if(w > 0 && h > 0) { double avg[4] = {0, 0, 0, 0}; double min[4] = {999999, 999999, 999999, 999999}; double max[4] = {0, 0, 0, 0}; for(unsigned y = 0; y < h; y++) { for(unsigned x = 0; x < w; x++) { for(int c = 0; c < 4; c++) { double v = 256 * image[y * 8 * w + x * 8 + c * 2] + image[y * 8 * w + x * 8 + c * 2 + 1]; avg[c] += v; min[c] = std::min(min[c], v); max[c] = std::max(max[c], v); } } } for(int c = 0; c < 4; c++) { avg[c] /= (w * h * 257.0); min[c] /= 257.0; max[c] /= 257.0; } if(options.verbose) std::cout << "Ranges shown as 0.0-255.0, even for 16-bit data:" << std::endl; std::cout << "Average color: " << avg[0] << ", " << avg[1] << ", " << avg[2] << ", " << avg[3] << std::endl; std::cout << "Color ranges: " << min[0] << "-" << max[0] << ", " << min[1] << "-" << max[1] << ", " << min[2] << "-" << max[2] << ", " << min[3] << "-" << max[3] << std::endl; } } void showErrors(Data& data, const Options& options) { std::cout << "Error report: " << std::endl; Data data2(data.filename); loadWithErrorRecovery(data2, options, true); } void showRender(Data& data, const Options& options) { data.loadPixels(); if(data.error) return; if(options.rendermode == RM_ASCII) { displayAsciiArt(data.pixels, data.w, data.h, options.rendersize); } if(options.rendermode == RM_HEX) { displayColorsHex(data.pixels, data.w, data.h, false); } if(options.rendermode == RM_HEX16) { displayColorsHex(data.pixels, data.w, data.h, true); } if(options.rendermode == RM_PAL) { displayPalettePixels(data.buffer, options); } } void showInfos(Data& data, const Options& options) { if(options.show_one_line_summary) showSingleLineSummary(data, options); if(options.show_errors) showErrors(data, options); if(options.show_header || options.show_icc_details || options.show_icc_hex) showHeaderInfo(data, options); if(options.show_color_stats) showColorStats(data, options); if(options.show_png_info) showPNGInfo(data, options); if(options.show_palette) displayPalette(data, options); if(options.show_chunks || options.show_chunks2) displayChunkNames(data, options); if(options.show_filters) displayFilterTypes(data, options); if(options.show_render) showRender(data, options); if(options.zlib_info || options.zlib_blocks || options.zlib_counts || options.zlib_full) { printZlibInfo(data, options); } if(data.error) showError(data, options); } int main(int argc, char *argv[]) { Options options; bool options_chosen = false; std::vector filenames; for (int i = 1; i < argc; i++) { std::string s = argv[i]; if(s.size() > 1 && s[0] == '-' && s[1] != '-') { // anything that chooses actual set disables the defaults if(s != "-x" && s != "-v" && s != "-t") options_chosen = true; for(size_t j = 1; j < s.size(); j++) { char c = s[j]; if(c == '?') { showHelp(); return 0; } else if(c == 'o') options.show_one_line_summary = true; else if(c == 'h') options.show_header = true; else if(c == 'i') options.show_icc_details = true; else if(c == 'I') options.show_icc_hex = true; else if(c == 'v') options.verbose = true; else if(c == 't') options.expand_long_texts = true; else if(c == 's') options.show_color_stats = true; else if(c == 'e') options.show_errors = true; else if(c == 'p') options.show_header = options.show_png_info = true; else if(c == 'r') options.show_render = true; else if(c == 'l') options.show_palette = true; else if(c == 'L') options.show_palette_pixels = true; else if(c == 'c') options.show_chunks = true; else if(c == 'C') options.show_chunks2 = true; else if(c == 'f') options.show_filters = true; else if(c == 'z') options.zlib_info = true; else if(c == 'b') options.zlib_blocks = true; else if(c == 'B') { options.zlib_blocks = true; options.zlib_counts = true; } else if(c == '7') { options.zlib_blocks = true; options.zlib_full = true; } else if(c == 'x') { options.use_hex = true; std::cout << std::hex; } else if(c == '-') { if(s != "--help") std::cout << "Unknown flag: " << s << ". Use -h for help" << std::endl; showHelp(); return 0; } else { std::cout << "Unknown flag: " << c << ". Use -h for help" << std::endl; showHelp(); return 0; } } } else if(s.size() > 1 && s[0] == '-' && s[1] == '-') { size_t eqpos = 2; while(eqpos < s.size() && s[eqpos] != '=') eqpos++; std::string key = s.substr(2, eqpos - 2); std::string value = (eqpos + 1) < s.size() ? s.substr(eqpos + 1) : ""; if(key == "help") { showHelp(); return 0; } if(key == "mode") { if(value == "ascii") options.rendermode = RM_ASCII; else if(value == "hex") options.rendermode = RM_HEX; else if(value == "hex16") options.rendermode = RM_HEX16; else if(value == "palette") options.rendermode = RM_PAL; } if(key == "size") { int size = strtoval(value); if(options.rendersize >= 1 && options.rendersize <= 4096) options.rendersize = size; } if(key == "format") { if(value == "mix") options.hexformat = HF_MIX; else if(value == "hex") options.hexformat = HF_HEX; } } else filenames.push_back(s); } if(filenames.empty()) { std::cout << "Please provide a filename to preview" << std::endl; showHelp(); return 0; } if(!options_chosen) { //fill in defaults options.show_header = true; options.show_png_info = true; options.show_chunks2 = true; // verbose lets individual sections show more, and in addition adds more default unlocked sections if no specific one chosen if(options.verbose) { options.show_chunks2 = false; options.show_chunks = true; } } for(size_t i = 0; i < filenames.size(); i++) { if(filenames.size() > 1) { if(i > 0 && !options.show_one_line_summary) std::cout << std::endl; std::cout << filenames[i] << ":"; if(!options.show_one_line_summary) std::cout << std::endl; else std::cout << " "; } Data data(filenames[i]); showInfos(data, options); } }