From c8d07aeaa59e5850d212644357af31a54f4787fb Mon Sep 17 00:00:00 2001 From: doinachiroiu Date: Wed, 26 Aug 2020 14:56:19 +0000 Subject: [PATCH] Changing paths for propertly usage of the submodule --- oss-internship-2020/pffft/CMakeLists.txt | 12 +- oss-internship-2020/pffft/README.md | 4 +- oss-internship-2020/pffft/README.txt | 416 --- oss-internship-2020/pffft/fftpack.c | 3112 ----------------- oss-internship-2020/pffft/fftpack.h | 799 ----- .../pffft/main_pffft_sandboxed.cc | 1 - oss-internship-2020/pffft/pffft.c | 1881 ---------- oss-internship-2020/pffft/pffft.h | 177 - oss-internship-2020/pffft/test_pffft.c | 419 --- 9 files changed, 8 insertions(+), 6813 deletions(-) delete mode 100644 oss-internship-2020/pffft/README.txt delete mode 100644 oss-internship-2020/pffft/fftpack.c delete mode 100644 oss-internship-2020/pffft/fftpack.h delete mode 100644 oss-internship-2020/pffft/pffft.c delete mode 100644 oss-internship-2020/pffft/pffft.h delete mode 100644 oss-internship-2020/pffft/test_pffft.c diff --git a/oss-internship-2020/pffft/CMakeLists.txt b/oss-internship-2020/pffft/CMakeLists.txt index 442bb74..c2a7bcd 100644 --- a/oss-internship-2020/pffft/CMakeLists.txt +++ b/oss-internship-2020/pffft/CMakeLists.txt @@ -20,14 +20,14 @@ set(CMAKE_CXX_STANDARD 17) set(CMAKE_CXX_STANDARD_REQUIRED True) add_library(pffft STATIC - pffft.c - pffft.h - fftpack.c - fftpack.h + master/pffft.c + master/pffft.h + master/fftpack.c + master/fftpack.h ) add_executable(pffft_main - test_pffft.c + master/test_pffft.c ) target_link_libraries(pffft_main PRIVATE @@ -84,7 +84,7 @@ add_sapi_library(pffft_sapi sinti sint - INPUTS pffft.h fftpack.h + INPUTS master/pffft.h master/fftpack.h LIBRARY pffft LIBRARY_NAME pffft diff --git a/oss-internship-2020/pffft/README.md b/oss-internship-2020/pffft/README.md index 6cef583..2d2a9ca 100644 --- a/oss-internship-2020/pffft/README.md +++ b/oss-internship-2020/pffft/README.md @@ -4,9 +4,9 @@ Build System: CMake OS: Linux ### Check out the PFFFT library & CMake set up -`mkdir -p build && cd build` +`git submodule add https://bitbucket.org/jpommier/pffft.git` -`git clone https://bitbucket.org/jpommier/pffft.git` +`mkdir -p build && cd build` `cmake .. -G Ninja -DPFFFT_ROOT_DIR=$PWD` diff --git a/oss-internship-2020/pffft/README.txt b/oss-internship-2020/pffft/README.txt deleted file mode 100644 index ee20b42..0000000 --- a/oss-internship-2020/pffft/README.txt +++ /dev/null @@ -1,416 +0,0 @@ -PFFFT: a pretty fast FFT. - -TL;DR --- - -PFFFT does 1D Fast Fourier Transforms, of single precision real and -complex vectors. It tries do it fast, it tries to be correct, and it -tries to be small. Computations do take advantage of SSE1 instructions -on x86 cpus, Altivec on powerpc cpus, and NEON on ARM cpus. The -license is BSD-like. - - -Why does it exist: --- - -I was in search of a good performing FFT library , preferably very -small and with a very liberal license. - -When one says "fft library", FFTW ("Fastest Fourier Transform in the -West") is probably the first name that comes to mind -- I guess that -99% of open-source projects that need a FFT do use FFTW, and are happy -with it. However, it is quite a large library , which does everything -fft related (2d transforms, 3d transforms, other transformations such -as discrete cosine , or fast hartley). And it is licensed under the -GNU GPL , which means that it cannot be used in non open-source -products. - -An alternative to FFTW that is really small, is the venerable FFTPACK -v4, which is available on NETLIB. A more recent version (v5) exists, -but it is larger as it deals with multi-dimensional transforms. This -is a library that is written in FORTRAN 77, a language that is now -considered as a bit antiquated by many. FFTPACKv4 was written in 1985, -by Dr Paul Swarztrauber of NCAR, more than 25 years ago ! And despite -its age, benchmarks show it that it still a very good performing FFT -library, see for example the 1d single precision benchmarks here: -http://www.fftw.org/speed/opteron-2.2GHz-32bit/ . It is however not -competitive with the fastest ones, such as FFTW, Intel MKL, AMD ACML, -Apple vDSP. The reason for that is that those libraries do take -advantage of the SSE SIMD instructions available on Intel CPUs, -available since the days of the Pentium III. These instructions deal -with small vectors of 4 floats at a time, instead of a single float -for a traditionnal FPU, so when using these instructions one may expect -a 4-fold performance improvement. - -The idea was to take this fortran fftpack v4 code, translate to C, -modify it to deal with those SSE instructions, and check that the -final performance is not completely ridiculous when compared to other -SIMD FFT libraries. Translation to C was performed with f2c ( -http://www.netlib.org/f2c/ ). The resulting file was a bit edited in -order to remove the thousands of gotos that were introduced by -f2c. You will find the fftpack.h and fftpack.c sources in the -repository, this a complete translation of -http://www.netlib.org/fftpack/ , with the discrete cosine transform -and the test program. There is no license information in the netlib -repository, but it was confirmed to me by the fftpack v5 curators that -the same terms do apply to fftpack v4: -http://www.cisl.ucar.edu/css/software/fftpack5/ftpk.html . This is a -"BSD-like" license, it is compatible with proprietary projects. - -Adapting fftpack to deal with the SIMD 4-element vectors instead of -scalar single precision numbers was more complex than I originally -thought, especially with the real transforms, and I ended up writing -more code than I planned.. - - -The code: --- - -Only two files, in good old C, pffft.c and pffft.h . The API is very -very simple, just make sure that you read the comments in pffft.h. - - -Comparison with other FFTs: --- - -The idea was not to break speed records, but to get a decently fast -fft that is at least 50% as fast as the fastest FFT -- especially on -slowest computers . I'm more focused on getting the best performance -on slow cpus (Atom, Intel Core 1, old Athlons, ARM Cortex-A9...), than -on getting top performance on today fastest cpus. - -It can be used in a real-time context as the fft functions do not -perform any memory allocation -- that is why they accept a 'work' -array in their arguments. - -It is also a bit focused on performing 1D convolutions, that is why it -provides "unordered" FFTs , and a fourier domain convolution -operation. - - -Benchmark results (cpu tested: core i7 2600, core 2 quad, core 1 duo, atom N270, cortex-A9, cortex-A15, A8X) --- - -The benchmark shows the performance of various fft implementations measured in -MFlops, with the number of floating point operations being defined as 5Nlog2(N) -for a length N complex fft, and 2.5*Nlog2(N) for a real fft. -See http://www.fftw.org/speed/method.html for an explanation of these formulas. - -MacOS Lion, gcc 4.2, 64-bit, fftw 3.3 on a 3.4 GHz core i7 2600 - -Built with: - - gcc-4.2 -o test_pffft -arch x86_64 -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -DHAVE_VECLIB -framework veclib -DHAVE_FFTW -lfftw3f - -| input len |real FFTPack| real vDSP | real FFTW | real PFFFT | |cplx FFTPack| cplx vDSP | cplx FFTW | cplx PFFFT | -|-----------+------------+------------+------------+------------| |------------+------------+------------+------------| -| 64 | 2816 | 8596 | 7329 | 8187 | | 2887 | 14898 | 14668 | 11108 | -| 96 | 3298 | n/a | 8378 | 7727 | | 3953 | n/a | 15680 | 10878 | -| 128 | 3507 | 11575 | 9266 | 10108 | | 4233 | 17598 | 16427 | 12000 | -| 160 | 3391 | n/a | 9838 | 10711 | | 4220 | n/a | 16653 | 11187 | -| 192 | 3919 | n/a | 9868 | 10956 | | 4297 | n/a | 15770 | 12540 | -| 256 | 4283 | 13179 | 10694 | 13128 | | 4545 | 19550 | 16350 | 13822 | -| 384 | 3136 | n/a | 10810 | 12061 | | 3600 | n/a | 16103 | 13240 | -| 480 | 3477 | n/a | 10632 | 12074 | | 3536 | n/a | 11630 | 12522 | -| 512 | 3783 | 15141 | 11267 | 13838 | | 3649 | 20002 | 16560 | 13580 | -| 640 | 3639 | n/a | 11164 | 13946 | | 3695 | n/a | 15416 | 13890 | -| 768 | 3800 | n/a | 11245 | 13495 | | 3590 | n/a | 15802 | 14552 | -| 800 | 3440 | n/a | 10499 | 13301 | | 3659 | n/a | 12056 | 13268 | -| 1024 | 3924 | 15605 | 11450 | 15339 | | 3769 | 20963 | 13941 | 15467 | -| 2048 | 4518 | 16195 | 11551 | 15532 | | 4258 | 20413 | 13723 | 15042 | -| 2400 | 4294 | n/a | 10685 | 13078 | | 4093 | n/a | 12777 | 13119 | -| 4096 | 4750 | 16596 | 11672 | 15817 | | 4157 | 19662 | 14316 | 14336 | -| 8192 | 3820 | 16227 | 11084 | 12555 | | 3691 | 18132 | 12102 | 13813 | -| 9216 | 3864 | n/a | 10254 | 12870 | | 3586 | n/a | 12119 | 13994 | -| 16384 | 3822 | 15123 | 10454 | 12822 | | 3613 | 16874 | 12370 | 13881 | -| 32768 | 4175 | 14512 | 10662 | 11095 | | 3881 | 14702 | 11619 | 11524 | -| 262144 | 3317 | 11429 | 6269 | 9517 | | 2810 | 11729 | 7757 | 10179 | -| 1048576 | 2913 | 10551 | 4730 | 5867 | | 2661 | 7881 | 3520 | 5350 | -|-----------+------------+------------+------------+------------| |------------+------------+------------+------------| - - -Debian 6, gcc 4.4.5, 64-bit, fftw 3.3.1 on a 3.4 GHz core i7 2600 - -Built with: -gcc -o test_pffft -DHAVE_FFTW -msse2 -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L$HOME/local/lib -I$HOME/local/include/ -lfftw3f -lm - -| N (input length) | real FFTPack | real FFTW | real PFFFT | | cplx FFTPack | cplx FFTW | cplx PFFFT | -|------------------+--------------+--------------+--------------| |--------------+--------------+--------------| -| 64 | 3840 | 7680 | 8777 | | 4389 | 20480 | 11171 | -| 96 | 4214 | 9633 | 8429 | | 4816 | 22477 | 11238 | -| 128 | 3584 | 10240 | 10240 | | 5120 | 23893 | 11947 | -| 192 | 4854 | 11095 | 12945 | | 4854 | 22191 | 14121 | -| 256 | 4096 | 11703 | 16384 | | 5120 | 23406 | 13653 | -| 384 | 4395 | 14651 | 12558 | | 4884 | 19535 | 14651 | -| 512 | 5760 | 13166 | 15360 | | 4608 | 23040 | 15360 | -| 768 | 4907 | 14020 | 16357 | | 4461 | 19628 | 14020 | -| 1024 | 5120 | 14629 | 14629 | | 5120 | 20480 | 15754 | -| 2048 | 5632 | 14080 | 18773 | | 4693 | 12516 | 16091 | -| 4096 | 5120 | 13653 | 17554 | | 4726 | 7680 | 14456 | -| 8192 | 4160 | 7396 | 13312 | | 4437 | 14791 | 13312 | -| 9216 | 4210 | 6124 | 13473 | | 4491 | 7282 | 14970 | -| 16384 | 3976 | 11010 | 14313 | | 4210 | 11450 | 13631 | -| 32768 | 4260 | 10224 | 10954 | | 4260 | 6816 | 11797 | -| 262144 | 3736 | 6896 | 9961 | | 2359 | 8965 | 9437 | -| 1048576 | 2796 | 4534 | 6453 | | 1864 | 3078 | 5592 | -|------------------+--------------+--------------+--------------| |--------------+--------------+--------------| - - - -MacOS Snow Leopard, gcc 4.0, 32-bit, fftw 3.3 on a 1.83 GHz core 1 duo - -Built with: - - gcc -o test_pffft -DHAVE_FFTW -DHAVE_VECLIB -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -framework veclib - -| input len |real FFTPack| real vDSP | real FFTW | real PFFFT | |cplx FFTPack| cplx vDSP | cplx FFTW | cplx PFFFT | -|-----------+------------+------------+------------+------------| |------------+------------+------------+------------| -| 64 | 745 | 2145 | 1706 | 2028 | | 961 | 3356 | 3313 | 2300 | -| 96 | 877 | n/a | 1976 | 1978 | | 1059 | n/a | 3333 | 2233 | -| 128 | 951 | 2808 | 2213 | 2279 | | 1202 | 3803 | 3739 | 2494 | -| 192 | 1002 | n/a | 2456 | 2429 | | 1186 | n/a | 3701 | 2508 | -| 256 | 1065 | 3205 | 2641 | 2793 | | 1302 | 4013 | 3912 | 2663 | -| 384 | 845 | n/a | 2759 | 2499 | | 948 | n/a | 3729 | 2504 | -| 512 | 900 | 3476 | 2956 | 2759 | | 974 | 4057 | 3954 | 2645 | -| 768 | 910 | n/a | 2912 | 2737 | | 975 | n/a | 3837 | 2614 | -| 1024 | 936 | 3583 | 3107 | 3009 | | 1006 | 4124 | 3821 | 2697 | -| 2048 | 1057 | 3585 | 3091 | 2837 | | 1089 | 3889 | 3701 | 2513 | -| 4096 | 1083 | 3524 | 3092 | 2733 | | 1039 | 3617 | 3462 | 2364 | -| 8192 | 874 | 3252 | 2967 | 2363 | | 911 | 3106 | 2789 | 2302 | -| 9216 | 898 | n/a | 2420 | 2290 | | 865 | n/a | 2676 | 2204 | -| 16384 | 903 | 2892 | 2506 | 2421 | | 899 | 3026 | 2797 | 2289 | -| 32768 | 965 | 2837 | 2550 | 2358 | | 920 | 2922 | 2763 | 2240 | -| 262144 | 738 | 2422 | 1589 | 1708 | | 610 | 2038 | 1436 | 1091 | -| 1048576 | 528 | 1207 | 845 | 880 | | 606 | 1020 | 669 | 1036 | -|-----------+------------+------------+------------+------------| |------------+------------+------------+------------| - - - -Ubuntu 11.04, gcc 4.5, 32-bit, fftw 3.2 on a 2.66 core 2 quad - -Built with: -gcc -o test_pffft -DHAVE_FFTW -msse -mfpmath=sse -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -lm - -| input len |real FFTPack| real FFTW | real PFFFT | |cplx FFTPack| cplx FFTW | cplx PFFFT | -|-----------+------------+------------+------------| |------------+------------+------------| -| 64 | 1920 | 3614 | 5120 | | 2194 | 7680 | 6467 | -| 96 | 1873 | 3549 | 5187 | | 2107 | 8429 | 5863 | -| 128 | 2240 | 3773 | 5514 | | 2560 | 7964 | 6827 | -| 192 | 1765 | 4569 | 7767 | | 2284 | 9137 | 7061 | -| 256 | 2048 | 5461 | 7447 | | 2731 | 9638 | 7802 | -| 384 | 1998 | 5861 | 6762 | | 2313 | 9253 | 7644 | -| 512 | 2095 | 6144 | 7680 | | 2194 | 10240 | 7089 | -| 768 | 2230 | 5773 | 7549 | | 2045 | 10331 | 7010 | -| 1024 | 2133 | 6400 | 8533 | | 2133 | 10779 | 7877 | -| 2048 | 2011 | 7040 | 8665 | | 1942 | 10240 | 7768 | -| 4096 | 2194 | 6827 | 8777 | | 1755 | 9452 | 6827 | -| 8192 | 1849 | 6656 | 6656 | | 1752 | 7831 | 6827 | -| 9216 | 1871 | 5858 | 6416 | | 1643 | 6909 | 6266 | -| 16384 | 1883 | 6223 | 6506 | | 1664 | 7340 | 6982 | -| 32768 | 1826 | 6390 | 6667 | | 1631 | 7481 | 6971 | -| 262144 | 1546 | 4075 | 5977 | | 1299 | 3415 | 3551 | -| 1048576 | 1104 | 2071 | 1730 | | 1104 | 1149 | 1834 | -|-----------+------------+------------+------------| |------------+------------+------------| - - - -Ubuntu 11.04, gcc 4.5, 32-bit, fftw 3.3 on a 1.6 GHz Atom N270 - -Built with: -gcc -o test_pffft -DHAVE_FFTW -msse -mfpmath=sse -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -lm - -| N (input length) | real FFTPack | real FFTW | real PFFFT | | cplx FFTPack | cplx FFTW | cplx PFFFT | -|------------------+--------------+--------------+--------------| |--------------+--------------+--------------| -| 64 | 452 | 1041 | 1336 | | 549 | 2318 | 1781 | -| 96 | 444 | 1297 | 1297 | | 503 | 2408 | 1686 | -| 128 | 527 | 1525 | 1707 | | 543 | 2655 | 1886 | -| 192 | 498 | 1653 | 1849 | | 539 | 2678 | 1942 | -| 256 | 585 | 1862 | 2156 | | 594 | 2777 | 2244 | -| 384 | 499 | 1870 | 1998 | | 511 | 2586 | 1890 | -| 512 | 562 | 2095 | 2194 | | 542 | 2973 | 2194 | -| 768 | 545 | 2045 | 2133 | | 545 | 2365 | 2133 | -| 1024 | 595 | 2133 | 2438 | | 569 | 2695 | 2179 | -| 2048 | 587 | 2125 | 2347 | | 521 | 2230 | 1707 | -| 4096 | 495 | 1890 | 1834 | | 492 | 1876 | 1672 | -| 8192 | 469 | 1548 | 1729 | | 438 | 1740 | 1664 | -| 9216 | 468 | 1663 | 1663 | | 446 | 1585 | 1531 | -| 16384 | 453 | 1608 | 1767 | | 398 | 1476 | 1664 | -| 32768 | 456 | 1420 | 1503 | | 387 | 1388 | 1345 | -| 262144 | 309 | 385 | 726 | | 262 | 415 | 840 | -| 1048576 | 280 | 351 | 739 | | 261 | 313 | 797 | -|------------------+--------------+--------------+--------------| |--------------+--------------+--------------| - - - -Windows 7, visual c++ 2010 on a 1.6 GHz Atom N270 - -Built with: -cl /Ox -D_USE_MATH_DEFINES /arch:SSE test_pffft.c pffft.c fftpack.c - -(visual c++ is definitively not very good with SSE intrinsics...) - -| N (input length) | real FFTPack | real PFFFT | | cplx FFTPack | cplx PFFFT | -|------------------+--------------+--------------| |--------------+--------------| -| 64 | 173 | 1009 | | 174 | 1159 | -| 96 | 169 | 1029 | | 188 | 1201 | -| 128 | 195 | 1242 | | 191 | 1275 | -| 192 | 178 | 1312 | | 184 | 1276 | -| 256 | 196 | 1591 | | 186 | 1281 | -| 384 | 172 | 1409 | | 181 | 1281 | -| 512 | 187 | 1640 | | 181 | 1313 | -| 768 | 171 | 1614 | | 176 | 1258 | -| 1024 | 186 | 1812 | | 178 | 1223 | -| 2048 | 190 | 1707 | | 186 | 1099 | -| 4096 | 182 | 1446 | | 177 | 975 | -| 8192 | 175 | 1345 | | 169 | 1034 | -| 9216 | 165 | 1271 | | 168 | 1023 | -| 16384 | 166 | 1396 | | 165 | 949 | -| 32768 | 172 | 1311 | | 161 | 881 | -| 262144 | 136 | 632 | | 134 | 629 | -| 1048576 | 134 | 698 | | 127 | 623 | -|------------------+--------------+--------------| |--------------+--------------| - - - -Ubuntu 12.04, gcc-4.7.3, 32-bit, with fftw 3.3.3 (built with --enable-neon), on a 1.2GHz ARM Cortex A9 (Tegra 3) - -Built with: -gcc-4.7 -O3 -DHAVE_FFTW -march=armv7-a -mtune=cortex-a9 -mfloat-abi=hard -mfpu=neon -ffast-math test_pffft.c pffft.c -o test_pffft_arm fftpack.c -lm -I/usr/local/include/ -L/usr/local/lib/ -lfftw3f - -| input len |real FFTPack| real FFTW | real PFFFT | |cplx FFTPack| cplx FFTW | cplx PFFFT | -|-----------+------------+------------+------------| |------------+------------+------------| -| 64 | 549 | 452 | 731 | | 512 | 602 | 640 | -| 96 | 421 | 272 | 702 | | 496 | 571 | 602 | -| 128 | 498 | 512 | 815 | | 597 | 618 | 652 | -| 160 | 521 | 536 | 815 | | 586 | 669 | 625 | -| 192 | 539 | 571 | 883 | | 485 | 597 | 626 | -| 256 | 640 | 539 | 975 | | 569 | 611 | 671 | -| 384 | 499 | 610 | 879 | | 499 | 602 | 637 | -| 480 | 518 | 507 | 877 | | 496 | 661 | 616 | -| 512 | 524 | 591 | 1002 | | 549 | 678 | 668 | -| 640 | 542 | 612 | 955 | | 568 | 663 | 645 | -| 768 | 557 | 613 | 981 | | 491 | 663 | 598 | -| 800 | 514 | 353 | 882 | | 514 | 360 | 574 | -| 1024 | 640 | 640 | 1067 | | 492 | 683 | 602 | -| 2048 | 587 | 640 | 908 | | 486 | 640 | 552 | -| 2400 | 479 | 368 | 777 | | 422 | 376 | 518 | -| 4096 | 511 | 614 | 853 | | 426 | 640 | 534 | -| 8192 | 415 | 584 | 708 | | 386 | 622 | 516 | -| 9216 | 419 | 571 | 687 | | 364 | 586 | 506 | -| 16384 | 426 | 577 | 716 | | 398 | 606 | 530 | -| 32768 | 417 | 572 | 673 | | 399 | 572 | 468 | -| 262144 | 219 | 380 | 293 | | 255 | 431 | 343 | -| 1048576 | 202 | 274 | 237 | | 265 | 282 | 355 | -|-----------+------------+------------+------------| |------------+------------+------------| - -Same platform as above, but this time pffft and fftpack are built with clang 3.2: - -clang -O3 -DHAVE_FFTW -march=armv7-a -mtune=cortex-a9 -mfloat-abi=hard -mfpu=neon -ffast-math test_pffft.c pffft.c -o test_pffft_arm fftpack.c -lm -I/usr/local/include/ -L/usr/local/lib/ -lfftw3f - -| input len |real FFTPack| real FFTW | real PFFFT | |cplx FFTPack| cplx FFTW | cplx PFFFT | -|-----------+------------+------------+------------| |------------+------------+------------| -| 64 | 427 | 452 | 853 | | 427 | 602 | 1024 | -| 96 | 351 | 276 | 843 | | 337 | 571 | 963 | -| 128 | 373 | 512 | 996 | | 390 | 618 | 1054 | -| 160 | 426 | 536 | 987 | | 375 | 669 | 914 | -| 192 | 404 | 571 | 1079 | | 388 | 588 | 1079 | -| 256 | 465 | 539 | 1205 | | 445 | 602 | 1170 | -| 384 | 366 | 610 | 1099 | | 343 | 594 | 1099 | -| 480 | 356 | 507 | 1140 | | 335 | 651 | 931 | -| 512 | 411 | 591 | 1213 | | 384 | 649 | 1124 | -| 640 | 398 | 612 | 1193 | | 373 | 654 | 901 | -| 768 | 409 | 613 | 1227 | | 383 | 663 | 1044 | -| 800 | 411 | 348 | 1073 | | 353 | 358 | 809 | -| 1024 | 427 | 640 | 1280 | | 413 | 692 | 1004 | -| 2048 | 414 | 626 | 1126 | | 371 | 640 | 853 | -| 2400 | 399 | 373 | 898 | | 319 | 368 | 653 | -| 4096 | 404 | 602 | 1059 | | 357 | 633 | 778 | -| 8192 | 332 | 584 | 792 | | 308 | 616 | 716 | -| 9216 | 322 | 561 | 783 | | 299 | 586 | 687 | -| 16384 | 344 | 568 | 778 | | 314 | 617 | 745 | -| 32768 | 342 | 564 | 737 | | 314 | 552 | 629 | -| 262144 | 201 | 383 | 313 | | 227 | 435 | 413 | -| 1048576 | 187 | 262 | 251 | | 228 | 281 | 409 | -|-----------+------------+------------+------------| |------------+------------+------------| - -So it looks like, on ARM, gcc 4.7 is the best at scalar floating point -(the fftpack performance numbers are better with gcc), while clang is -the best with neon intrinsics (see how pffft perf has improved with -clang 3.2). - - -NVIDIA Jetson TK1 board, gcc-4.8.2. The cpu is a 2.3GHz cortex A15 (Tegra K1). - -Built with: -gcc -O3 -march=armv7-a -mtune=native -mfloat-abi=hard -mfpu=neon -ffast-math test_pffft.c pffft.c -o test_pffft_arm fftpack.c -lm - -| input len |real FFTPack| real PFFFT | |cplx FFTPack| cplx PFFFT | -|-----------+------------+------------| |------------+------------| -| 64 | 1735 | 3308 | | 1994 | 3744 | -| 96 | 1596 | 3448 | | 1987 | 3572 | -| 128 | 1807 | 4076 | | 2255 | 3960 | -| 160 | 1769 | 4083 | | 2071 | 3845 | -| 192 | 1990 | 4233 | | 2017 | 3939 | -| 256 | 2191 | 4882 | | 2254 | 4346 | -| 384 | 1878 | 4492 | | 2073 | 4012 | -| 480 | 1748 | 4398 | | 1923 | 3951 | -| 512 | 2030 | 5064 | | 2267 | 4195 | -| 640 | 1918 | 4756 | | 2094 | 4184 | -| 768 | 2099 | 4907 | | 2048 | 4297 | -| 800 | 1822 | 4555 | | 1880 | 4063 | -| 1024 | 2232 | 5355 | | 2187 | 4420 | -| 2048 | 2176 | 4983 | | 2027 | 3602 | -| 2400 | 1741 | 4256 | | 1710 | 3344 | -| 4096 | 1816 | 3914 | | 1851 | 3349 | -| 8192 | 1716 | 3481 | | 1700 | 3255 | -| 9216 | 1735 | 3589 | | 1653 | 3094 | -| 16384 | 1567 | 3483 | | 1637 | 3244 | -| 32768 | 1624 | 3240 | | 1655 | 3156 | -| 262144 | 1012 | 1898 | | 983 | 1503 | -| 1048576 | 876 | 1154 | | 868 | 1341 | -|-----------+------------+------------| |------------+------------| - -The performance on the tegra K1 is pretty impressive. I'm not -including the FFTW numbers as they as slightly below the scalar -fftpack numbers, so something must be wrong (however it seems to be -correctly configured and is using neon simd instructions). - -When using clang 3.4 the pffft version is even a bit faster, reaching -5.7 GFlops for real ffts of size 1024. - - -iPad Air 2 with iOS9, xcode 8.0, arm64. The cpu is an Apple A8X, supposedly running at 1.5GHz. - -| input len |real FFTPack| real vDSP | real PFFFT | |cplx FFTPack| cplx vDSP | cplx PFFFT | -|-----------+------------+------------+------------| |------------+------------+------------| -| 64 | 2517 | 7995 | 6086 | | 2725 | 13006 | 8495 | -| 96 | 2442 | n/a | 6691 | | 2256 | n/a | 7991 | -| 128 | 2664 | 10186 | 7877 | | 2575 | 15115 | 9115 | -| 160 | 2638 | n/a | 8283 | | 2682 | n/a | 8806 | -| 192 | 2903 | n/a | 9083 | | 2634 | n/a | 8980 | -| 256 | 3184 | 11452 | 10039 | | 3026 | 15410 | 10199 | -| 384 | 2665 | n/a | 10100 | | 2275 | n/a | 9247 | -| 480 | 2546 | n/a | 9863 | | 2341 | n/a | 8892 | -| 512 | 2832 | 12197 | 10989 | | 2547 | 16768 | 10154 | -| 640 | 2755 | n/a | 10461 | | 2569 | n/a | 9666 | -| 768 | 2998 | n/a | 11355 | | 2585 | n/a | 9813 | -| 800 | 2516 | n/a | 10332 | | 2433 | n/a | 9164 | -| 1024 | 3109 | 12965 | 12114 | | 2869 | 16448 | 10519 | -| 2048 | 3027 | 12996 | 12023 | | 2648 | 17304 | 10307 | -| 2400 | 2515 | n/a | 10372 | | 2355 | n/a | 8443 | -| 4096 | 3204 | 13603 | 12359 | | 2814 | 16570 | 9780 | -| 8192 | 2759 | 13422 | 10824 | | 2153 | 15652 | 7884 | -| 9216 | 2700 | n/a | 9938 | | 2241 | n/a | 7900 | -| 16384 | 2280 | 13057 | 7976 | | 593 | 4272 | 2534 | -| 32768 | 768 | 4269 | 2882 | | 606 | 4405 | 2604 | -| 262144 | 724 | 3527 | 2630 | | 534 | 2418 | 2157 | -| 1048576 | 674 | 1467 | 2135 | | 530 | 1621 | 2055 | -|-----------+------------+------------+------------| |------------+------------+------------| - -I double-checked to make sure I did not make a mistake in the time -measurements, as the numbers are much higher than what I initially -expected. They are in fact higher than the number I get on the 2.8GHz -Xeon of my 2008 mac pro.. (except for FFT lengths >= 32768 where -having a big cache is useful). A good surprise is also that the perf -is not too far from apple's vDSP (at least for the real FFT). - diff --git a/oss-internship-2020/pffft/fftpack.c b/oss-internship-2020/pffft/fftpack.c deleted file mode 100644 index b6375a8..0000000 --- a/oss-internship-2020/pffft/fftpack.c +++ /dev/null @@ -1,3112 +0,0 @@ -/* - compile with cc -DTESTING_FFTPACK fftpack.c in order to build the - test application. - - This is an f2c translation of the full fftpack sources as found on - http://www.netlib.org/fftpack/ The translated code has been - slightlty edited to remove the ugliest artefacts of the translation - (a hundred of wild GOTOs were wiped during that operation). - - The original fftpack file was written by Paul N. Swarztrauber - (Version 4, 1985), in fortran 77. - - FFTPACK license: - - http://www.cisl.ucar.edu/css/software/fftpack5/ftpk.html - - Copyright (c) 2004 the University Corporation for Atmospheric - Research ("UCAR"). All rights reserved. Developed by NCAR's - Computational and Information Systems Laboratory, UCAR, - www.cisl.ucar.edu. - - Redistribution and use of the Software in source and binary forms, - with or without modification, is permitted provided that the - following conditions are met: - - - Neither the names of NCAR's Computational and Information Systems - Laboratory, the University Corporation for Atmospheric Research, - nor the names of its sponsors or contributors may be used to - endorse or promote products derived from this Software without - specific prior written permission. - - - Redistributions of source code must retain the above copyright - notices, this list of conditions, and the disclaimer below. - - - Redistributions in binary form must reproduce the above copyright - notice, this list of conditions, and the disclaimer below in the - documentation and/or other materials provided with the - distribution. - - THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, - EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE WARRANTIES OF - MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND - NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT - HOLDERS BE LIABLE FOR ANY CLAIM, INDIRECT, INCIDENTAL, SPECIAL, - EXEMPLARY, OR CONSEQUENTIAL DAMAGES OR OTHER LIABILITY, WHETHER IN AN - ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE - SOFTWARE. - - ChangeLog: - 2011/10/02: this is my first release of this file. -*/ - -#include "fftpack.h" -#include - -typedef fftpack_real real; -typedef fftpack_int integer; - -typedef struct f77complex { - real r, i; -} f77complex; - -#ifdef TESTING_FFTPACK -static real c_abs(f77complex *c) { return sqrt(c->r*c->r + c->i*c->i); } -static double dmax(double a, double b) { return a < b ? b : a; } -#endif - -/* translated by f2c (version 20061008), and slightly edited */ - -static void passfb(integer *nac, integer ido, integer ip, integer l1, integer idl1, - real *cc, real *c1, real *c2, real *ch, real *ch2, const real *wa, real fsign) -{ - /* System generated locals */ - integer ch_offset, cc_offset, - c1_offset, c2_offset, ch2_offset; - - /* Local variables */ - integer i, j, k, l, jc, lc, ik, idj, idl, inc, idp; - real wai, war; - integer ipp2, idij, idlj, idot, ipph; - - -#define c1_ref(a_1,a_2,a_3) c1[((a_3)*l1 + (a_2))*ido + a_1] -#define c2_ref(a_1,a_2) c2[(a_2)*idl1 + a_1] -#define cc_ref(a_1,a_2,a_3) cc[((a_3)*ip + (a_2))*ido + a_1] -#define ch_ref(a_1,a_2,a_3) ch[((a_3)*l1 + (a_2))*ido + a_1] -#define ch2_ref(a_1,a_2) ch2[(a_2)*idl1 + a_1] - - /* Parameter adjustments */ - ch_offset = 1 + ido * (1 + l1); - ch -= ch_offset; - c1_offset = 1 + ido * (1 + l1); - c1 -= c1_offset; - cc_offset = 1 + ido * (1 + ip); - cc -= cc_offset; - ch2_offset = 1 + idl1; - ch2 -= ch2_offset; - c2_offset = 1 + idl1; - c2 -= c2_offset; - --wa; - - /* Function Body */ - idot = ido / 2; - ipp2 = ip + 2; - ipph = (ip + 1) / 2; - idp = ip * ido; - - if (ido >= l1) { - for (j = 2; j <= ipph; ++j) { - jc = ipp2 - j; - for (k = 1; k <= l1; ++k) { - for (i = 1; i <= ido; ++i) { - ch_ref(i, k, j) = cc_ref(i, j, k) + cc_ref(i, jc, k); - ch_ref(i, k, jc) = cc_ref(i, j, k) - cc_ref(i, jc, k); - } - } - } - for (k = 1; k <= l1; ++k) { - for (i = 1; i <= ido; ++i) { - ch_ref(i, k, 1) = cc_ref(i, 1, k); - } - } - } else { - for (j = 2; j <= ipph; ++j) { - jc = ipp2 - j; - for (i = 1; i <= ido; ++i) { - for (k = 1; k <= l1; ++k) { - ch_ref(i, k, j) = cc_ref(i, j, k) + cc_ref(i, jc, k); - ch_ref(i, k, jc) = cc_ref(i, j, k) - cc_ref(i, jc, k); - } - } - } - for (i = 1; i <= ido; ++i) { - for (k = 1; k <= l1; ++k) { - ch_ref(i, k, 1) = cc_ref(i, 1, k); - } - } - } - idl = 2 - ido; - inc = 0; - for (l = 2; l <= ipph; ++l) { - lc = ipp2 - l; - idl += ido; - for (ik = 1; ik <= idl1; ++ik) { - c2_ref(ik, l) = ch2_ref(ik, 1) + wa[idl - 1] * ch2_ref(ik, 2); - c2_ref(ik, lc) = fsign*wa[idl] * ch2_ref(ik, ip); - } - idlj = idl; - inc += ido; - for (j = 3; j <= ipph; ++j) { - jc = ipp2 - j; - idlj += inc; - if (idlj > idp) { - idlj -= idp; - } - war = wa[idlj - 1]; - wai = wa[idlj]; - for (ik = 1; ik <= idl1; ++ik) { - c2_ref(ik, l) = c2_ref(ik, l) + war * ch2_ref(ik, j); - c2_ref(ik, lc) = c2_ref(ik, lc) + fsign*wai * ch2_ref(ik, jc); - } - } - } - for (j = 2; j <= ipph; ++j) { - for (ik = 1; ik <= idl1; ++ik) { - ch2_ref(ik, 1) = ch2_ref(ik, 1) + ch2_ref(ik, j); - } - } - for (j = 2; j <= ipph; ++j) { - jc = ipp2 - j; - for (ik = 2; ik <= idl1; ik += 2) { - ch2_ref(ik - 1, j) = c2_ref(ik - 1, j) - c2_ref(ik, jc); - ch2_ref(ik - 1, jc) = c2_ref(ik - 1, j) + c2_ref(ik, jc); - ch2_ref(ik, j) = c2_ref(ik, j) + c2_ref(ik - 1, jc); - ch2_ref(ik, jc) = c2_ref(ik, j) - c2_ref(ik - 1, jc); - } - } - *nac = 1; - if (ido == 2) { - return; - } - *nac = 0; - for (ik = 1; ik <= idl1; ++ik) { - c2_ref(ik, 1) = ch2_ref(ik, 1); - } - for (j = 2; j <= ip; ++j) { - for (k = 1; k <= l1; ++k) { - c1_ref(1, k, j) = ch_ref(1, k, j); - c1_ref(2, k, j) = ch_ref(2, k, j); - } - } - if (idot <= l1) { - idij = 0; - for (j = 2; j <= ip; ++j) { - idij += 2; - for (i = 4; i <= ido; i += 2) { - idij += 2; - for (k = 1; k <= l1; ++k) { - c1_ref(i - 1, k, j) = wa[idij - 1] * ch_ref(i - 1, k, j) - fsign*wa[idij] * ch_ref(i, k, j); - c1_ref(i, k, j) = wa[idij - 1] * ch_ref(i, k, j) + fsign*wa[idij] * ch_ref(i - 1, k, j); - } - } - } - return; - } - idj = 2 - ido; - for (j = 2; j <= ip; ++j) { - idj += ido; - for (k = 1; k <= l1; ++k) { - idij = idj; - for (i = 4; i <= ido; i += 2) { - idij += 2; - c1_ref(i - 1, k, j) = wa[idij - 1] * ch_ref(i - 1, k, j) - fsign*wa[idij] * ch_ref(i, k, j); - c1_ref(i, k, j) = wa[idij - 1] * ch_ref(i, k, j) + fsign*wa[idij] * ch_ref(i - 1, k, j); - } - } - } -} /* passb */ - -#undef ch2_ref -#undef ch_ref -#undef cc_ref -#undef c2_ref -#undef c1_ref - - -static void passb2(integer ido, integer l1, const real *cc, real *ch, const real *wa1) -{ - /* System generated locals */ - integer cc_offset, ch_offset; - - /* Local variables */ - integer i, k; - real ti2, tr2; - - -#define cc_ref(a_1,a_2,a_3) cc[((a_3)*2 + (a_2))*ido + a_1] -#define ch_ref(a_1,a_2,a_3) ch[((a_3)*l1 + (a_2))*ido + a_1] - - /* Parameter adjustments */ - ch_offset = 1 + ido * (1 + l1); - ch -= ch_offset; - cc_offset = 1 + ido * 3; - cc -= cc_offset; - --wa1; - - /* Function Body */ - if (ido <= 2) { - for (k = 1; k <= l1; ++k) { - ch_ref(1, k, 1) = cc_ref(1, 1, k) + cc_ref(1, 2, k); - ch_ref(1, k, 2) = cc_ref(1, 1, k) - cc_ref(1, 2, k); - ch_ref(2, k, 1) = cc_ref(2, 1, k) + cc_ref(2, 2, k); - ch_ref(2, k, 2) = cc_ref(2, 1, k) - cc_ref(2, 2, k); - } - return; - } - for (k = 1; k <= l1; ++k) { - for (i = 2; i <= ido; i += 2) { - ch_ref(i - 1, k, 1) = cc_ref(i - 1, 1, k) + cc_ref(i - 1, 2, k); - tr2 = cc_ref(i - 1, 1, k) - cc_ref(i - 1, 2, k); - ch_ref(i, k, 1) = cc_ref(i, 1, k) + cc_ref(i, 2, k); - ti2 = cc_ref(i, 1, k) - cc_ref(i, 2, k); - ch_ref(i, k, 2) = wa1[i - 1] * ti2 + wa1[i] * tr2; - ch_ref(i - 1, k, 2) = wa1[i - 1] * tr2 - wa1[i] * ti2; - } - } -} /* passb2 */ - -#undef ch_ref -#undef cc_ref - - -static void passb3(integer ido, integer l1, const real *cc, real *ch, const real *wa1, const real *wa2) -{ - static const real taur = -.5f; - static const real taui = .866025403784439f; - - /* System generated locals */ - integer cc_offset, ch_offset; - - /* Local variables */ - integer i, k; - real ci2, ci3, di2, di3, cr2, cr3, dr2, dr3, ti2, tr2; - - -#define cc_ref(a_1,a_2,a_3) cc[((a_3)*3 + (a_2))*ido + a_1] -#define ch_ref(a_1,a_2,a_3) ch[((a_3)*l1 + (a_2))*ido + a_1] - - /* Parameter adjustments */ - ch_offset = 1 + ido * (1 + l1); - ch -= ch_offset; - cc_offset = 1 + (ido << 2); - cc -= cc_offset; - --wa1; - --wa2; - - /* Function Body */ - if (ido == 2) { - for (k = 1; k <= l1; ++k) { - tr2 = cc_ref(1, 2, k) + cc_ref(1, 3, k); - cr2 = cc_ref(1, 1, k) + taur * tr2; - ch_ref(1, k, 1) = cc_ref(1, 1, k) + tr2; - ti2 = cc_ref(2, 2, k) + cc_ref(2, 3, k); - ci2 = cc_ref(2, 1, k) + taur * ti2; - ch_ref(2, k, 1) = cc_ref(2, 1, k) + ti2; - cr3 = taui * (cc_ref(1, 2, k) - cc_ref(1, 3, k)); - ci3 = taui * (cc_ref(2, 2, k) - cc_ref(2, 3, k)); - ch_ref(1, k, 2) = cr2 - ci3; - ch_ref(1, k, 3) = cr2 + ci3; - ch_ref(2, k, 2) = ci2 + cr3; - ch_ref(2, k, 3) = ci2 - cr3; - } - } else { - for (k = 1; k <= l1; ++k) { - for (i = 2; i <= ido; i += 2) { - tr2 = cc_ref(i - 1, 2, k) + cc_ref(i - 1, 3, k); - cr2 = cc_ref(i - 1, 1, k) + taur * tr2; - ch_ref(i - 1, k, 1) = cc_ref(i - 1, 1, k) + tr2; - ti2 = cc_ref(i, 2, k) + cc_ref(i, 3, k); - ci2 = cc_ref(i, 1, k) + taur * ti2; - ch_ref(i, k, 1) = cc_ref(i, 1, k) + ti2; - cr3 = taui * (cc_ref(i - 1, 2, k) - cc_ref(i - 1, 3, k)); - ci3 = taui * (cc_ref(i, 2, k) - cc_ref(i, 3, k)); - dr2 = cr2 - ci3; - dr3 = cr2 + ci3; - di2 = ci2 + cr3; - di3 = ci2 - cr3; - ch_ref(i, k, 2) = wa1[i - 1] * di2 + wa1[i] * dr2; - ch_ref(i - 1, k, 2) = wa1[i - 1] * dr2 - wa1[i] * di2; - ch_ref(i, k, 3) = wa2[i - 1] * di3 + wa2[i] * dr3; - ch_ref(i - 1, k, 3) = wa2[i - 1] * dr3 - wa2[i] * di3; - } - } - } -} /* passb3 */ - -#undef ch_ref -#undef cc_ref - - -static void passb4(integer ido, integer l1, const real *cc, real *ch, - const real *wa1, const real *wa2, const real *wa3) -{ - /* System generated locals */ - integer cc_offset, ch_offset; - - /* Local variables */ - integer i, k; - real ci2, ci3, ci4, cr2, cr3, cr4, ti1, ti2, ti3, ti4, tr1, tr2, tr3, tr4; - - -#define cc_ref(a_1,a_2,a_3) cc[((a_3)*4 + (a_2))*ido + a_1] -#define ch_ref(a_1,a_2,a_3) ch[((a_3)*l1 + (a_2))*ido + a_1] - - /* Parameter adjustments */ - ch_offset = 1 + ido * (1 + l1); - ch -= ch_offset; - cc_offset = 1 + ido * 5; - cc -= cc_offset; - --wa1; - --wa2; - --wa3; - - /* Function Body */ - if (ido == 2) { - for (k = 1; k <= l1; ++k) { - ti1 = cc_ref(2, 1, k) - cc_ref(2, 3, k); - ti2 = cc_ref(2, 1, k) + cc_ref(2, 3, k); - tr4 = cc_ref(2, 4, k) - cc_ref(2, 2, k); - ti3 = cc_ref(2, 2, k) + cc_ref(2, 4, k); - tr1 = cc_ref(1, 1, k) - cc_ref(1, 3, k); - tr2 = cc_ref(1, 1, k) + cc_ref(1, 3, k); - ti4 = cc_ref(1, 2, k) - cc_ref(1, 4, k); - tr3 = cc_ref(1, 2, k) + cc_ref(1, 4, k); - ch_ref(1, k, 1) = tr2 + tr3; - ch_ref(1, k, 3) = tr2 - tr3; - ch_ref(2, k, 1) = ti2 + ti3; - ch_ref(2, k, 3) = ti2 - ti3; - ch_ref(1, k, 2) = tr1 + tr4; - ch_ref(1, k, 4) = tr1 - tr4; - ch_ref(2, k, 2) = ti1 + ti4; - ch_ref(2, k, 4) = ti1 - ti4; - } - } else { - for (k = 1; k <= l1; ++k) { - for (i = 2; i <= ido; i += 2) { - ti1 = cc_ref(i, 1, k) - cc_ref(i, 3, k); - ti2 = cc_ref(i, 1, k) + cc_ref(i, 3, k); - ti3 = cc_ref(i, 2, k) + cc_ref(i, 4, k); - tr4 = cc_ref(i, 4, k) - cc_ref(i, 2, k); - tr1 = cc_ref(i - 1, 1, k) - cc_ref(i - 1, 3, k); - tr2 = cc_ref(i - 1, 1, k) + cc_ref(i - 1, 3, k); - ti4 = cc_ref(i - 1, 2, k) - cc_ref(i - 1, 4, k); - tr3 = cc_ref(i - 1, 2, k) + cc_ref(i - 1, 4, k); - ch_ref(i - 1, k, 1) = tr2 + tr3; - cr3 = tr2 - tr3; - ch_ref(i, k, 1) = ti2 + ti3; - ci3 = ti2 - ti3; - cr2 = tr1 + tr4; - cr4 = tr1 - tr4; - ci2 = ti1 + ti4; - ci4 = ti1 - ti4; - ch_ref(i - 1, k, 2) = wa1[i - 1] * cr2 - wa1[i] * ci2; - ch_ref(i, k, 2) = wa1[i - 1] * ci2 + wa1[i] * cr2; - ch_ref(i - 1, k, 3) = wa2[i - 1] * cr3 - wa2[i] * ci3; - ch_ref(i, k, 3) = wa2[i - 1] * ci3 + wa2[i] * cr3; - ch_ref(i - 1, k, 4) = wa3[i - 1] * cr4 - wa3[i] * ci4; - ch_ref(i, k, 4) = wa3[i - 1] * ci4 + wa3[i] * cr4; - } - } - } -} /* passb4 */ - -#undef ch_ref -#undef cc_ref - -/* passf5 and passb5 merged */ -static void passfb5(integer ido, integer l1, const real *cc, real *ch, - const real *wa1, const real *wa2, const real *wa3, const real *wa4, real fsign) -{ - const real tr11 = .309016994374947f; - const real ti11 = .951056516295154f*fsign; - const real tr12 = -.809016994374947f; - const real ti12 = .587785252292473f*fsign; - - /* System generated locals */ - integer cc_offset, ch_offset; - - /* Local variables */ - integer i, k; - real ci2, ci3, ci4, ci5, di3, di4, di5, di2, cr2, cr3, cr5, cr4, ti2, ti3, - ti4, ti5, dr3, dr4, dr5, dr2, tr2, tr3, tr4, tr5; - - -#define cc_ref(a_1,a_2,a_3) cc[((a_3)*5 + (a_2))*ido + a_1] -#define ch_ref(a_1,a_2,a_3) ch[((a_3)*l1 + (a_2))*ido + a_1] - - /* Parameter adjustments */ - ch_offset = 1 + ido * (1 + l1); - ch -= ch_offset; - cc_offset = 1 + ido * 6; - cc -= cc_offset; - --wa1; - --wa2; - --wa3; - --wa4; - - /* Function Body */ - if (ido == 2) { - for (k = 1; k <= l1; ++k) { - ti5 = cc_ref(2, 2, k) - cc_ref(2, 5, k); - ti2 = cc_ref(2, 2, k) + cc_ref(2, 5, k); - ti4 = cc_ref(2, 3, k) - cc_ref(2, 4, k); - ti3 = cc_ref(2, 3, k) + cc_ref(2, 4, k); - tr5 = cc_ref(1, 2, k) - cc_ref(1, 5, k); - tr2 = cc_ref(1, 2, k) + cc_ref(1, 5, k); - tr4 = cc_ref(1, 3, k) - cc_ref(1, 4, k); - tr3 = cc_ref(1, 3, k) + cc_ref(1, 4, k); - ch_ref(1, k, 1) = cc_ref(1, 1, k) + tr2 + tr3; - ch_ref(2, k, 1) = cc_ref(2, 1, k) + ti2 + ti3; - cr2 = cc_ref(1, 1, k) + tr11 * tr2 + tr12 * tr3; - ci2 = cc_ref(2, 1, k) + tr11 * ti2 + tr12 * ti3; - cr3 = cc_ref(1, 1, k) + tr12 * tr2 + tr11 * tr3; - ci3 = cc_ref(2, 1, k) + tr12 * ti2 + tr11 * ti3; - cr5 = ti11 * tr5 + ti12 * tr4; - ci5 = ti11 * ti5 + ti12 * ti4; - cr4 = ti12 * tr5 - ti11 * tr4; - ci4 = ti12 * ti5 - ti11 * ti4; - ch_ref(1, k, 2) = cr2 - ci5; - ch_ref(1, k, 5) = cr2 + ci5; - ch_ref(2, k, 2) = ci2 + cr5; - ch_ref(2, k, 3) = ci3 + cr4; - ch_ref(1, k, 3) = cr3 - ci4; - ch_ref(1, k, 4) = cr3 + ci4; - ch_ref(2, k, 4) = ci3 - cr4; - ch_ref(2, k, 5) = ci2 - cr5; - } - } else { - for (k = 1; k <= l1; ++k) { - for (i = 2; i <= ido; i += 2) { - ti5 = cc_ref(i, 2, k) - cc_ref(i, 5, k); - ti2 = cc_ref(i, 2, k) + cc_ref(i, 5, k); - ti4 = cc_ref(i, 3, k) - cc_ref(i, 4, k); - ti3 = cc_ref(i, 3, k) + cc_ref(i, 4, k); - tr5 = cc_ref(i - 1, 2, k) - cc_ref(i - 1, 5, k); - tr2 = cc_ref(i - 1, 2, k) + cc_ref(i - 1, 5, k); - tr4 = cc_ref(i - 1, 3, k) - cc_ref(i - 1, 4, k); - tr3 = cc_ref(i - 1, 3, k) + cc_ref(i - 1, 4, k); - ch_ref(i - 1, k, 1) = cc_ref(i - 1, 1, k) + tr2 + tr3; - ch_ref(i, k, 1) = cc_ref(i, 1, k) + ti2 + ti3; - cr2 = cc_ref(i - 1, 1, k) + tr11 * tr2 + tr12 * tr3; - ci2 = cc_ref(i, 1, k) + tr11 * ti2 + tr12 * ti3; - cr3 = cc_ref(i - 1, 1, k) + tr12 * tr2 + tr11 * tr3; - ci3 = cc_ref(i, 1, k) + tr12 * ti2 + tr11 * ti3; - cr5 = ti11 * tr5 + ti12 * tr4; - ci5 = ti11 * ti5 + ti12 * ti4; - cr4 = ti12 * tr5 - ti11 * tr4; - ci4 = ti12 * ti5 - ti11 * ti4; - dr3 = cr3 - ci4; - dr4 = cr3 + ci4; - di3 = ci3 + cr4; - di4 = ci3 - cr4; - dr5 = cr2 + ci5; - dr2 = cr2 - ci5; - di5 = ci2 - cr5; - di2 = ci2 + cr5; - ch_ref(i - 1, k, 2) = wa1[i - 1] * dr2 - fsign*wa1[i] * di2; - ch_ref(i, k, 2) = wa1[i - 1] * di2 + fsign*wa1[i] * dr2; - ch_ref(i - 1, k, 3) = wa2[i - 1] * dr3 - fsign*wa2[i] * di3; - ch_ref(i, k, 3) = wa2[i - 1] * di3 + fsign*wa2[i] * dr3; - ch_ref(i - 1, k, 4) = wa3[i - 1] * dr4 - fsign*wa3[i] * di4; - ch_ref(i, k, 4) = wa3[i - 1] * di4 + fsign*wa3[i] * dr4; - ch_ref(i - 1, k, 5) = wa4[i - 1] * dr5 - fsign*wa4[i] * di5; - ch_ref(i, k, 5) = wa4[i - 1] * di5 + fsign*wa4[i] * dr5; - } - } - } -} /* passb5 */ - -#undef ch_ref -#undef cc_ref - -static void passf2(integer ido, integer l1, const real *cc, real *ch, const real *wa1) -{ - /* System generated locals */ - integer cc_offset, ch_offset; - - /* Local variables */ - integer i, k; - real ti2, tr2; - - -#define cc_ref(a_1,a_2,a_3) cc[((a_3)*2 + (a_2))*ido + a_1] -#define ch_ref(a_1,a_2,a_3) ch[((a_3)*l1 + (a_2))*ido + a_1] - - /* Parameter adjustments */ - ch_offset = 1 + ido * (1 + l1); - ch -= ch_offset; - cc_offset = 1 + ido * 3; - cc -= cc_offset; - --wa1; - - /* Function Body */ - if (ido == 2) { - for (k = 1; k <= l1; ++k) { - ch_ref(1, k, 1) = cc_ref(1, 1, k) + cc_ref(1, 2, k); - ch_ref(1, k, 2) = cc_ref(1, 1, k) - cc_ref(1, 2, k); - ch_ref(2, k, 1) = cc_ref(2, 1, k) + cc_ref(2, 2, k); - ch_ref(2, k, 2) = cc_ref(2, 1, k) - cc_ref(2, 2, k); - } - } else { - for (k = 1; k <= l1; ++k) { - for (i = 2; i <= ido; i += 2) { - ch_ref(i - 1, k, 1) = cc_ref(i - 1, 1, k) + cc_ref(i - 1, 2, - k); - tr2 = cc_ref(i - 1, 1, k) - cc_ref(i - 1, 2, k); - ch_ref(i, k, 1) = cc_ref(i, 1, k) + cc_ref(i, 2, k); - ti2 = cc_ref(i, 1, k) - cc_ref(i, 2, k); - ch_ref(i, k, 2) = wa1[i - 1] * ti2 - wa1[i] * tr2; - ch_ref(i - 1, k, 2) = wa1[i - 1] * tr2 + wa1[i] * ti2; - } - } - } -} /* passf2 */ - -#undef ch_ref -#undef cc_ref - - -static void passf3(integer ido, integer l1, const real *cc, real *ch, - const real *wa1, const real *wa2) -{ - static const real taur = -.5f; - static const real taui = -.866025403784439f; - - /* System generated locals */ - integer cc_offset, ch_offset; - - /* Local variables */ - integer i, k; - real ci2, ci3, di2, di3, cr2, cr3, dr2, dr3, ti2, tr2; - - -#define cc_ref(a_1,a_2,a_3) cc[((a_3)*3 + (a_2))*ido + a_1] -#define ch_ref(a_1,a_2,a_3) ch[((a_3)*l1 + (a_2))*ido + a_1] - - /* Parameter adjustments */ - ch_offset = 1 + ido * (1 + l1); - ch -= ch_offset; - cc_offset = 1 + (ido << 2); - cc -= cc_offset; - --wa1; - --wa2; - - /* Function Body */ - if (ido == 2) { - for (k = 1; k <= l1; ++k) { - tr2 = cc_ref(1, 2, k) + cc_ref(1, 3, k); - cr2 = cc_ref(1, 1, k) + taur * tr2; - ch_ref(1, k, 1) = cc_ref(1, 1, k) + tr2; - ti2 = cc_ref(2, 2, k) + cc_ref(2, 3, k); - ci2 = cc_ref(2, 1, k) + taur * ti2; - ch_ref(2, k, 1) = cc_ref(2, 1, k) + ti2; - cr3 = taui * (cc_ref(1, 2, k) - cc_ref(1, 3, k)); - ci3 = taui * (cc_ref(2, 2, k) - cc_ref(2, 3, k)); - ch_ref(1, k, 2) = cr2 - ci3; - ch_ref(1, k, 3) = cr2 + ci3; - ch_ref(2, k, 2) = ci2 + cr3; - ch_ref(2, k, 3) = ci2 - cr3; - } - } else { - for (k = 1; k <= l1; ++k) { - for (i = 2; i <= ido; i += 2) { - tr2 = cc_ref(i - 1, 2, k) + cc_ref(i - 1, 3, k); - cr2 = cc_ref(i - 1, 1, k) + taur * tr2; - ch_ref(i - 1, k, 1) = cc_ref(i - 1, 1, k) + tr2; - ti2 = cc_ref(i, 2, k) + cc_ref(i, 3, k); - ci2 = cc_ref(i, 1, k) + taur * ti2; - ch_ref(i, k, 1) = cc_ref(i, 1, k) + ti2; - cr3 = taui * (cc_ref(i - 1, 2, k) - cc_ref(i - 1, 3, k)); - ci3 = taui * (cc_ref(i, 2, k) - cc_ref(i, 3, k)); - dr2 = cr2 - ci3; - dr3 = cr2 + ci3; - di2 = ci2 + cr3; - di3 = ci2 - cr3; - ch_ref(i, k, 2) = wa1[i - 1] * di2 - wa1[i] * dr2; - ch_ref(i - 1, k, 2) = wa1[i - 1] * dr2 + wa1[i] * di2; - ch_ref(i, k, 3) = wa2[i - 1] * di3 - wa2[i] * dr3; - ch_ref(i - 1, k, 3) = wa2[i - 1] * dr3 + wa2[i] * di3; - } - } - } -} /* passf3 */ - -#undef ch_ref -#undef cc_ref - - -static void passf4(integer ido, integer l1, const real *cc, real *ch, - const real *wa1, const real *wa2, const real *wa3) -{ - /* System generated locals */ - integer cc_offset, ch_offset; - - /* Local variables */ - integer i, k; - real ci2, ci3, ci4, cr2, cr3, cr4, ti1, ti2, ti3, ti4, tr1, tr2, tr3, tr4; - - -#define cc_ref(a_1,a_2,a_3) cc[((a_3)*4 + (a_2))*ido + a_1] -#define ch_ref(a_1,a_2,a_3) ch[((a_3)*l1 + (a_2))*ido + a_1] - - /* Parameter adjustments */ - ch_offset = 1 + ido * (1 + l1); - ch -= ch_offset; - cc_offset = 1 + ido * 5; - cc -= cc_offset; - --wa1; - --wa2; - --wa3; - - /* Function Body */ - if (ido == 2) { - for (k = 1; k <= l1; ++k) { - ti1 = cc_ref(2, 1, k) - cc_ref(2, 3, k); - ti2 = cc_ref(2, 1, k) + cc_ref(2, 3, k); - tr4 = cc_ref(2, 2, k) - cc_ref(2, 4, k); - ti3 = cc_ref(2, 2, k) + cc_ref(2, 4, k); - tr1 = cc_ref(1, 1, k) - cc_ref(1, 3, k); - tr2 = cc_ref(1, 1, k) + cc_ref(1, 3, k); - ti4 = cc_ref(1, 4, k) - cc_ref(1, 2, k); - tr3 = cc_ref(1, 2, k) + cc_ref(1, 4, k); - ch_ref(1, k, 1) = tr2 + tr3; - ch_ref(1, k, 3) = tr2 - tr3; - ch_ref(2, k, 1) = ti2 + ti3; - ch_ref(2, k, 3) = ti2 - ti3; - ch_ref(1, k, 2) = tr1 + tr4; - ch_ref(1, k, 4) = tr1 - tr4; - ch_ref(2, k, 2) = ti1 + ti4; - ch_ref(2, k, 4) = ti1 - ti4; - } - } else { - for (k = 1; k <= l1; ++k) { - for (i = 2; i <= ido; i += 2) { - ti1 = cc_ref(i, 1, k) - cc_ref(i, 3, k); - ti2 = cc_ref(i, 1, k) + cc_ref(i, 3, k); - ti3 = cc_ref(i, 2, k) + cc_ref(i, 4, k); - tr4 = cc_ref(i, 2, k) - cc_ref(i, 4, k); - tr1 = cc_ref(i - 1, 1, k) - cc_ref(i - 1, 3, k); - tr2 = cc_ref(i - 1, 1, k) + cc_ref(i - 1, 3, k); - ti4 = cc_ref(i - 1, 4, k) - cc_ref(i - 1, 2, k); - tr3 = cc_ref(i - 1, 2, k) + cc_ref(i - 1, 4, k); - ch_ref(i - 1, k, 1) = tr2 + tr3; - cr3 = tr2 - tr3; - ch_ref(i, k, 1) = ti2 + ti3; - ci3 = ti2 - ti3; - cr2 = tr1 + tr4; - cr4 = tr1 - tr4; - ci2 = ti1 + ti4; - ci4 = ti1 - ti4; - ch_ref(i - 1, k, 2) = wa1[i - 1] * cr2 + wa1[i] * ci2; - ch_ref(i, k, 2) = wa1[i - 1] * ci2 - wa1[i] * cr2; - ch_ref(i - 1, k, 3) = wa2[i - 1] * cr3 + wa2[i] * ci3; - ch_ref(i, k, 3) = wa2[i - 1] * ci3 - wa2[i] * cr3; - ch_ref(i - 1, k, 4) = wa3[i - 1] * cr4 + wa3[i] * ci4; - ch_ref(i, k, 4) = wa3[i - 1] * ci4 - wa3[i] * cr4; - } - } - } -} /* passf4 */ - -#undef ch_ref -#undef cc_ref - -static void radb2(integer ido, integer l1, const real *cc, real *ch, const real *wa1) -{ - /* System generated locals */ - integer cc_offset, ch_offset; - - /* Local variables */ - integer i, k, ic; - real ti2, tr2; - integer idp2; - - -#define cc_ref(a_1,a_2,a_3) cc[((a_3)*2 + (a_2))*ido + a_1] -#define ch_ref(a_1,a_2,a_3) ch[((a_3)*l1 + (a_2))*ido + a_1] - - /* Parameter adjustments */ - ch_offset = 1 + ido * (1 + l1); - ch -= ch_offset; - cc_offset = 1 + ido * 3; - cc -= cc_offset; - --wa1; - - /* Function Body */ - for (k = 1; k <= l1; ++k) { - ch_ref(1, k, 1) = cc_ref(1, 1, k) + cc_ref(ido, 2, k); - ch_ref(1, k, 2) = cc_ref(1, 1, k) - cc_ref(ido, 2, k); - } - if (ido < 2) return; - else if (ido != 2) { - idp2 = ido + 2; - for (k = 1; k <= l1; ++k) { - for (i = 3; i <= ido; i += 2) { - ic = idp2 - i; - ch_ref(i - 1, k, 1) = cc_ref(i - 1, 1, k) + cc_ref(ic - 1, 2, - k); - tr2 = cc_ref(i - 1, 1, k) - cc_ref(ic - 1, 2, k); - ch_ref(i, k, 1) = cc_ref(i, 1, k) - cc_ref(ic, 2, k); - ti2 = cc_ref(i, 1, k) + cc_ref(ic, 2, k); - ch_ref(i - 1, k, 2) = wa1[i - 2] * tr2 - wa1[i - 1] * ti2; - ch_ref(i, k, 2) = wa1[i - 2] * ti2 + wa1[i - 1] * tr2; - } - } - if (ido % 2 == 1) return; - } - for (k = 1; k <= l1; ++k) { - ch_ref(ido, k, 1) = cc_ref(ido, 1, k) + cc_ref(ido, 1, k); - ch_ref(ido, k, 2) = -(cc_ref(1, 2, k) + cc_ref(1, 2, k)); - } -} /* radb2 */ - -#undef ch_ref -#undef cc_ref - - -static void radb3(integer ido, integer l1, const real *cc, real *ch, - const real *wa1, const real *wa2) -{ - /* Initialized data */ - - static const real taur = -.5f; - static const real taui = .866025403784439f; - - /* System generated locals */ - integer cc_offset, ch_offset; - - /* Local variables */ - integer i, k, ic; - real ci2, ci3, di2, di3, cr2, cr3, dr2, dr3, ti2, tr2; - integer idp2; - - -#define cc_ref(a_1,a_2,a_3) cc[((a_3)*3 + (a_2))*ido + a_1] -#define ch_ref(a_1,a_2,a_3) ch[((a_3)*l1 + (a_2))*ido + a_1] - - /* Parameter adjustments */ - ch_offset = 1 + ido * (1 + l1); - ch -= ch_offset; - cc_offset = 1 + (ido << 2); - cc -= cc_offset; - --wa1; - --wa2; - - /* Function Body */ - for (k = 1; k <= l1; ++k) { - tr2 = cc_ref(ido, 2, k) + cc_ref(ido, 2, k); - cr2 = cc_ref(1, 1, k) + taur * tr2; - ch_ref(1, k, 1) = cc_ref(1, 1, k) + tr2; - ci3 = taui * (cc_ref(1, 3, k) + cc_ref(1, 3, k)); - ch_ref(1, k, 2) = cr2 - ci3; - ch_ref(1, k, 3) = cr2 + ci3; - } - if (ido == 1) { - return; - } - idp2 = ido + 2; - for (k = 1; k <= l1; ++k) { - for (i = 3; i <= ido; i += 2) { - ic = idp2 - i; - tr2 = cc_ref(i - 1, 3, k) + cc_ref(ic - 1, 2, k); - cr2 = cc_ref(i - 1, 1, k) + taur * tr2; - ch_ref(i - 1, k, 1) = cc_ref(i - 1, 1, k) + tr2; - ti2 = cc_ref(i, 3, k) - cc_ref(ic, 2, k); - ci2 = cc_ref(i, 1, k) + taur * ti2; - ch_ref(i, k, 1) = cc_ref(i, 1, k) + ti2; - cr3 = taui * (cc_ref(i - 1, 3, k) - cc_ref(ic - 1, 2, k)); - ci3 = taui * (cc_ref(i, 3, k) + cc_ref(ic, 2, k)); - dr2 = cr2 - ci3; - dr3 = cr2 + ci3; - di2 = ci2 + cr3; - di3 = ci2 - cr3; - ch_ref(i - 1, k, 2) = wa1[i - 2] * dr2 - wa1[i - 1] * di2; - ch_ref(i, k, 2) = wa1[i - 2] * di2 + wa1[i - 1] * dr2; - ch_ref(i - 1, k, 3) = wa2[i - 2] * dr3 - wa2[i - 1] * di3; - ch_ref(i, k, 3) = wa2[i - 2] * di3 + wa2[i - 1] * dr3; - } - } -} /* radb3 */ - -#undef ch_ref -#undef cc_ref - - -static void radb4(integer ido, integer l1, const real *cc, real *ch, - const real *wa1, const real *wa2, const real *wa3) -{ - /* Initialized data */ - - static const real sqrt2 = 1.414213562373095f; - - /* System generated locals */ - integer cc_offset, ch_offset; - - /* Local variables */ - integer i, k, ic; - real ci2, ci3, ci4, cr2, cr3, cr4, ti1, ti2, ti3, ti4, tr1, tr2, tr3, tr4; - integer idp2; - - -#define cc_ref(a_1,a_2,a_3) cc[((a_3)*4 + (a_2))*ido + a_1] -#define ch_ref(a_1,a_2,a_3) ch[((a_3)*l1 + (a_2))*ido + a_1] - - /* Parameter adjustments */ - ch_offset = 1 + ido * (1 + l1); - ch -= ch_offset; - cc_offset = 1 + ido * 5; - cc -= cc_offset; - --wa1; - --wa2; - --wa3; - - /* Function Body */ - for (k = 1; k <= l1; ++k) { - tr1 = cc_ref(1, 1, k) - cc_ref(ido, 4, k); - tr2 = cc_ref(1, 1, k) + cc_ref(ido, 4, k); - tr3 = cc_ref(ido, 2, k) + cc_ref(ido, 2, k); - tr4 = cc_ref(1, 3, k) + cc_ref(1, 3, k); - ch_ref(1, k, 1) = tr2 + tr3; - ch_ref(1, k, 2) = tr1 - tr4; - ch_ref(1, k, 3) = tr2 - tr3; - ch_ref(1, k, 4) = tr1 + tr4; - } - if (ido < 2) return; - if (ido != 2) { - idp2 = ido + 2; - for (k = 1; k <= l1; ++k) { - for (i = 3; i <= ido; i += 2) { - ic = idp2 - i; - ti1 = cc_ref(i, 1, k) + cc_ref(ic, 4, k); - ti2 = cc_ref(i, 1, k) - cc_ref(ic, 4, k); - ti3 = cc_ref(i, 3, k) - cc_ref(ic, 2, k); - tr4 = cc_ref(i, 3, k) + cc_ref(ic, 2, k); - tr1 = cc_ref(i - 1, 1, k) - cc_ref(ic - 1, 4, k); - tr2 = cc_ref(i - 1, 1, k) + cc_ref(ic - 1, 4, k); - ti4 = cc_ref(i - 1, 3, k) - cc_ref(ic - 1, 2, k); - tr3 = cc_ref(i - 1, 3, k) + cc_ref(ic - 1, 2, k); - ch_ref(i - 1, k, 1) = tr2 + tr3; - cr3 = tr2 - tr3; - ch_ref(i, k, 1) = ti2 + ti3; - ci3 = ti2 - ti3; - cr2 = tr1 - tr4; - cr4 = tr1 + tr4; - ci2 = ti1 + ti4; - ci4 = ti1 - ti4; - ch_ref(i - 1, k, 2) = wa1[i - 2] * cr2 - wa1[i - 1] * ci2; - ch_ref(i, k, 2) = wa1[i - 2] * ci2 + wa1[i - 1] * cr2; - ch_ref(i - 1, k, 3) = wa2[i - 2] * cr3 - wa2[i - 1] * ci3; - ch_ref(i, k, 3) = wa2[i - 2] * ci3 + wa2[i - 1] * cr3; - ch_ref(i - 1, k, 4) = wa3[i - 2] * cr4 - wa3[i - 1] * ci4; - ch_ref(i, k, 4) = wa3[i - 2] * ci4 + wa3[i - 1] * cr4; - } - } - if (ido % 2 == 1) return; - } - for (k = 1; k <= l1; ++k) { - ti1 = cc_ref(1, 2, k) + cc_ref(1, 4, k); - ti2 = cc_ref(1, 4, k) - cc_ref(1, 2, k); - tr1 = cc_ref(ido, 1, k) - cc_ref(ido, 3, k); - tr2 = cc_ref(ido, 1, k) + cc_ref(ido, 3, k); - ch_ref(ido, k, 1) = tr2 + tr2; - ch_ref(ido, k, 2) = sqrt2 * (tr1 - ti1); - ch_ref(ido, k, 3) = ti2 + ti2; - ch_ref(ido, k, 4) = -sqrt2 * (tr1 + ti1); - } -} /* radb4 */ - -#undef ch_ref -#undef cc_ref - - -static void radb5(integer ido, integer l1, const real *cc, real *ch, - const real *wa1, const real *wa2, const real *wa3, const real *wa4) -{ - /* Initialized data */ - - static const real tr11 = .309016994374947f; - static const real ti11 = .951056516295154f; - static const real tr12 = -.809016994374947f; - static const real ti12 = .587785252292473f; - - /* System generated locals */ - integer cc_offset, ch_offset; - - /* Local variables */ - integer i, k, ic; - real ci2, ci3, ci4, ci5, di3, di4, di5, di2, cr2, cr3, cr5, cr4, ti2, ti3, - ti4, ti5, dr3, dr4, dr5, dr2, tr2, tr3, tr4, tr5; - integer idp2; - - -#define cc_ref(a_1,a_2,a_3) cc[((a_3)*5 + (a_2))*ido + a_1] -#define ch_ref(a_1,a_2,a_3) ch[((a_3)*l1 + (a_2))*ido + a_1] - - /* Parameter adjustments */ - ch_offset = 1 + ido * (1 + l1); - ch -= ch_offset; - cc_offset = 1 + ido * 6; - cc -= cc_offset; - --wa1; - --wa2; - --wa3; - --wa4; - - /* Function Body */ - for (k = 1; k <= l1; ++k) { - ti5 = cc_ref(1, 3, k) + cc_ref(1, 3, k); - ti4 = cc_ref(1, 5, k) + cc_ref(1, 5, k); - tr2 = cc_ref(ido, 2, k) + cc_ref(ido, 2, k); - tr3 = cc_ref(ido, 4, k) + cc_ref(ido, 4, k); - ch_ref(1, k, 1) = cc_ref(1, 1, k) + tr2 + tr3; - cr2 = cc_ref(1, 1, k) + tr11 * tr2 + tr12 * tr3; - cr3 = cc_ref(1, 1, k) + tr12 * tr2 + tr11 * tr3; - ci5 = ti11 * ti5 + ti12 * ti4; - ci4 = ti12 * ti5 - ti11 * ti4; - ch_ref(1, k, 2) = cr2 - ci5; - ch_ref(1, k, 3) = cr3 - ci4; - ch_ref(1, k, 4) = cr3 + ci4; - ch_ref(1, k, 5) = cr2 + ci5; - } - if (ido == 1) { - return; - } - idp2 = ido + 2; - for (k = 1; k <= l1; ++k) { - for (i = 3; i <= ido; i += 2) { - ic = idp2 - i; - ti5 = cc_ref(i, 3, k) + cc_ref(ic, 2, k); - ti2 = cc_ref(i, 3, k) - cc_ref(ic, 2, k); - ti4 = cc_ref(i, 5, k) + cc_ref(ic, 4, k); - ti3 = cc_ref(i, 5, k) - cc_ref(ic, 4, k); - tr5 = cc_ref(i - 1, 3, k) - cc_ref(ic - 1, 2, k); - tr2 = cc_ref(i - 1, 3, k) + cc_ref(ic - 1, 2, k); - tr4 = cc_ref(i - 1, 5, k) - cc_ref(ic - 1, 4, k); - tr3 = cc_ref(i - 1, 5, k) + cc_ref(ic - 1, 4, k); - ch_ref(i - 1, k, 1) = cc_ref(i - 1, 1, k) + tr2 + tr3; - ch_ref(i, k, 1) = cc_ref(i, 1, k) + ti2 + ti3; - cr2 = cc_ref(i - 1, 1, k) + tr11 * tr2 + tr12 * tr3; - ci2 = cc_ref(i, 1, k) + tr11 * ti2 + tr12 * ti3; - cr3 = cc_ref(i - 1, 1, k) + tr12 * tr2 + tr11 * tr3; - ci3 = cc_ref(i, 1, k) + tr12 * ti2 + tr11 * ti3; - cr5 = ti11 * tr5 + ti12 * tr4; - ci5 = ti11 * ti5 + ti12 * ti4; - cr4 = ti12 * tr5 - ti11 * tr4; - ci4 = ti12 * ti5 - ti11 * ti4; - dr3 = cr3 - ci4; - dr4 = cr3 + ci4; - di3 = ci3 + cr4; - di4 = ci3 - cr4; - dr5 = cr2 + ci5; - dr2 = cr2 - ci5; - di5 = ci2 - cr5; - di2 = ci2 + cr5; - ch_ref(i - 1, k, 2) = wa1[i - 2] * dr2 - wa1[i - 1] * di2; - ch_ref(i, k, 2) = wa1[i - 2] * di2 + wa1[i - 1] * dr2; - ch_ref(i - 1, k, 3) = wa2[i - 2] * dr3 - wa2[i - 1] * di3; - ch_ref(i, k, 3) = wa2[i - 2] * di3 + wa2[i - 1] * dr3; - ch_ref(i - 1, k, 4) = wa3[i - 2] * dr4 - wa3[i - 1] * di4; - ch_ref(i, k, 4) = wa3[i - 2] * di4 + wa3[i - 1] * dr4; - ch_ref(i - 1, k, 5) = wa4[i - 2] * dr5 - wa4[i - 1] * di5; - ch_ref(i, k, 5) = wa4[i - 2] * di5 + wa4[i - 1] * dr5; - } - } -} /* radb5 */ - -#undef ch_ref -#undef cc_ref - - -static void radbg(integer ido, integer ip, integer l1, integer idl1, - const real *cc, real *c1, real *c2, real *ch, real *ch2, const real *wa) -{ - /* System generated locals */ - integer ch_offset, cc_offset, - c1_offset, c2_offset, ch2_offset; - - /* Local variables */ - integer i, j, k, l, j2, ic, jc, lc, ik, is; - real dc2, ai1, ai2, ar1, ar2, ds2; - integer nbd; - real dcp, arg, dsp, ar1h, ar2h; - integer idp2, ipp2, idij, ipph; - - -#define c1_ref(a_1,a_2,a_3) c1[((a_3)*l1 + (a_2))*ido + a_1] -#define c2_ref(a_1,a_2) c2[(a_2)*idl1 + a_1] -#define cc_ref(a_1,a_2,a_3) cc[((a_3)*ip + (a_2))*ido + a_1] -#define ch_ref(a_1,a_2,a_3) ch[((a_3)*l1 + (a_2))*ido + a_1] -#define ch2_ref(a_1,a_2) ch2[(a_2)*idl1 + a_1] - - /* Parameter adjustments */ - ch_offset = 1 + ido * (1 + l1); - ch -= ch_offset; - c1_offset = 1 + ido * (1 + l1); - c1 -= c1_offset; - cc_offset = 1 + ido * (1 + ip); - cc -= cc_offset; - ch2_offset = 1 + idl1; - ch2 -= ch2_offset; - c2_offset = 1 + idl1; - c2 -= c2_offset; - --wa; - - /* Function Body */ - arg = (2*M_PI) / (real) (ip); - dcp = cos(arg); - dsp = sin(arg); - idp2 = ido + 2; - nbd = (ido - 1) / 2; - ipp2 = ip + 2; - ipph = (ip + 1) / 2; - if (ido >= l1) { - for (k = 1; k <= l1; ++k) { - for (i = 1; i <= ido; ++i) { - ch_ref(i, k, 1) = cc_ref(i, 1, k); - } - } - } else { - for (i = 1; i <= ido; ++i) { - for (k = 1; k <= l1; ++k) { - ch_ref(i, k, 1) = cc_ref(i, 1, k); - } - } - } - for (j = 2; j <= ipph; ++j) { - jc = ipp2 - j; - j2 = j + j; - for (k = 1; k <= l1; ++k) { - ch_ref(1, k, j) = cc_ref(ido, j2 - 2, k) + cc_ref(ido, j2 - 2, k); - ch_ref(1, k, jc) = cc_ref(1, j2 - 1, k) + cc_ref(1, j2 - 1, k); - } - } - if (ido != 1) { - if (nbd >= l1) { - for (j = 2; j <= ipph; ++j) { - jc = ipp2 - j; - for (k = 1; k <= l1; ++k) { - for (i = 3; i <= ido; i += 2) { - ic = idp2 - i; - ch_ref(i - 1, k, j) = cc_ref(i - 1, (j << 1) - 1, k) + cc_ref(ic - 1, (j << 1) - 2, k); - ch_ref(i - 1, k, jc) = cc_ref(i - 1, (j << 1) - 1, k) - cc_ref(ic - 1, (j << 1) - 2, k); - ch_ref(i, k, j) = cc_ref(i, (j << 1) - 1, k) - cc_ref(ic, (j << 1) - 2, k); - ch_ref(i, k, jc) = cc_ref(i, (j << 1) - 1, k) + cc_ref(ic, (j << 1) - 2, k); - } - } - } - } else { - for (j = 2; j <= ipph; ++j) { - jc = ipp2 - j; - for (i = 3; i <= ido; i += 2) { - ic = idp2 - i; - for (k = 1; k <= l1; ++k) { - ch_ref(i - 1, k, j) = cc_ref(i - 1, (j << 1) - 1, k) + cc_ref(ic - 1, (j << 1) - 2, k); - ch_ref(i - 1, k, jc) = cc_ref(i - 1, (j << 1) - 1, k) - cc_ref(ic - 1, (j << 1) - 2, k); - ch_ref(i, k, j) = cc_ref(i, (j << 1) - 1, k) - cc_ref(ic, (j << 1) - 2, k); - ch_ref(i, k, jc) = cc_ref(i, (j << 1) - 1, k) + cc_ref(ic, (j << 1) - 2, k); - } - } - } - } - } - ar1 = 1.f; - ai1 = 0.f; - for (l = 2; l <= ipph; ++l) { - lc = ipp2 - l; - ar1h = dcp * ar1 - dsp * ai1; - ai1 = dcp * ai1 + dsp * ar1; - ar1 = ar1h; - for (ik = 1; ik <= idl1; ++ik) { - c2_ref(ik, l) = ch2_ref(ik, 1) + ar1 * ch2_ref(ik, 2); - c2_ref(ik, lc) = ai1 * ch2_ref(ik, ip); - } - dc2 = ar1; - ds2 = ai1; - ar2 = ar1; - ai2 = ai1; - for (j = 3; j <= ipph; ++j) { - jc = ipp2 - j; - ar2h = dc2 * ar2 - ds2 * ai2; - ai2 = dc2 * ai2 + ds2 * ar2; - ar2 = ar2h; - for (ik = 1; ik <= idl1; ++ik) { - c2_ref(ik, l) = c2_ref(ik, l) + ar2 * ch2_ref(ik, j); - c2_ref(ik, lc) = c2_ref(ik, lc) + ai2 * ch2_ref(ik, jc); - } - } - } - for (j = 2; j <= ipph; ++j) { - for (ik = 1; ik <= idl1; ++ik) { - ch2_ref(ik, 1) = ch2_ref(ik, 1) + ch2_ref(ik, j); - } - } - for (j = 2; j <= ipph; ++j) { - jc = ipp2 - j; - for (k = 1; k <= l1; ++k) { - ch_ref(1, k, j) = c1_ref(1, k, j) - c1_ref(1, k, jc); - ch_ref(1, k, jc) = c1_ref(1, k, j) + c1_ref(1, k, jc); - } - } - if (ido != 1) { - if (nbd >= l1) { - for (j = 2; j <= ipph; ++j) { - jc = ipp2 - j; - for (k = 1; k <= l1; ++k) { - for (i = 3; i <= ido; i += 2) { - ch_ref(i - 1, k, j) = c1_ref(i - 1, k, j) - c1_ref(i, k, jc); - ch_ref(i - 1, k, jc) = c1_ref(i - 1, k, j) + c1_ref(i, k, jc); - ch_ref(i, k, j) = c1_ref(i, k, j) + c1_ref(i - 1, k, jc); - ch_ref(i, k, jc) = c1_ref(i, k, j) - c1_ref(i - 1, k, jc); - } - } - } - } else { - for (j = 2; j <= ipph; ++j) { - jc = ipp2 - j; - for (i = 3; i <= ido; i += 2) { - for (k = 1; k <= l1; ++k) { - ch_ref(i - 1, k, j) = c1_ref(i - 1, k, j) - c1_ref(i, k, jc); - ch_ref(i - 1, k, jc) = c1_ref(i - 1, k, j) + c1_ref(i, k, jc); - ch_ref(i, k, j) = c1_ref(i, k, j) + c1_ref(i - 1, k, jc); - ch_ref(i, k, jc) = c1_ref(i, k, j) - c1_ref(i - 1, k, jc); - } - } - } - } - } - if (ido == 1) { - return; - } - for (ik = 1; ik <= idl1; ++ik) { - c2_ref(ik, 1) = ch2_ref(ik, 1); - } - for (j = 2; j <= ip; ++j) { - for (k = 1; k <= l1; ++k) { - c1_ref(1, k, j) = ch_ref(1, k, j); - } - } - if (nbd <= l1) { - is = -(ido); - for (j = 2; j <= ip; ++j) { - is += ido; - idij = is; - for (i = 3; i <= ido; i += 2) { - idij += 2; - for (k = 1; k <= l1; ++k) { - c1_ref(i - 1, k, j) = wa[idij - 1] * ch_ref(i - 1, k, j) - - wa[idij] * ch_ref(i, k, j); - c1_ref(i, k, j) = wa[idij - 1] * ch_ref(i, k, j) + wa[idij] * ch_ref(i - 1, k, j); - } - } - } - } else { - is = -(ido); - for (j = 2; j <= ip; ++j) { - is += ido; - for (k = 1; k <= l1; ++k) { - idij = is; - for (i = 3; i <= ido; i += 2) { - idij += 2; - c1_ref(i - 1, k, j) = wa[idij - 1] * ch_ref(i - 1, k, j) - - wa[idij] * ch_ref(i, k, j); - c1_ref(i, k, j) = wa[idij - 1] * ch_ref(i, k, j) + wa[idij] * ch_ref(i - 1, k, j); - } - } - } - } -} /* radbg */ - -#undef ch2_ref -#undef ch_ref -#undef cc_ref -#undef c2_ref -#undef c1_ref - - -static void radf2(integer ido, integer l1, const real *cc, real *ch, - const real *wa1) -{ - /* System generated locals */ - integer ch_offset, cc_offset; - - /* Local variables */ - integer i, k, ic; - real ti2, tr2; - integer idp2; - - -#define cc_ref(a_1,a_2,a_3) cc[((a_3)*l1 + (a_2))*ido + a_1] -#define ch_ref(a_1,a_2,a_3) ch[((a_3)*2 + (a_2))*ido + a_1] - - /* Parameter adjustments */ - ch_offset = 1 + ido * 3; - ch -= ch_offset; - cc_offset = 1 + ido * (1 + l1); - cc -= cc_offset; - --wa1; - - /* Function Body */ - for (k = 1; k <= l1; ++k) { - ch_ref(1, 1, k) = cc_ref(1, k, 1) + cc_ref(1, k, 2); - ch_ref(ido, 2, k) = cc_ref(1, k, 1) - cc_ref(1, k, 2); - } - if (ido < 2) return; - if (ido != 2) { - idp2 = ido + 2; - for (k = 1; k <= l1; ++k) { - for (i = 3; i <= ido; i += 2) { - ic = idp2 - i; - tr2 = wa1[i - 2] * cc_ref(i - 1, k, 2) + wa1[i - 1] * - cc_ref(i, k, 2); - ti2 = wa1[i - 2] * cc_ref(i, k, 2) - wa1[i - 1] * cc_ref( - i - 1, k, 2); - ch_ref(i, 1, k) = cc_ref(i, k, 1) + ti2; - ch_ref(ic, 2, k) = ti2 - cc_ref(i, k, 1); - ch_ref(i - 1, 1, k) = cc_ref(i - 1, k, 1) + tr2; - ch_ref(ic - 1, 2, k) = cc_ref(i - 1, k, 1) - tr2; - } - } - if (ido % 2 == 1) { - return; - } - } - for (k = 1; k <= l1; ++k) { - ch_ref(1, 2, k) = -cc_ref(ido, k, 2); - ch_ref(ido, 1, k) = cc_ref(ido, k, 1); - } -} /* radf2 */ - -#undef ch_ref -#undef cc_ref - - -static void radf3(integer ido, integer l1, const real *cc, real *ch, - const real *wa1, const real *wa2) -{ - static const real taur = -.5f; - static const real taui = .866025403784439f; - - /* System generated locals */ - integer ch_offset, cc_offset; - - /* Local variables */ - integer i, k, ic; - real ci2, di2, di3, cr2, dr2, dr3, ti2, ti3, tr2, tr3; - integer idp2; - - -#define cc_ref(a_1,a_2,a_3) cc[((a_3)*l1 + (a_2))*ido + a_1] -#define ch_ref(a_1,a_2,a_3) ch[((a_3)*3 + (a_2))*ido + a_1] - - /* Parameter adjustments */ - ch_offset = 1 + (ido << 2); - ch -= ch_offset; - cc_offset = 1 + ido * (1 + l1); - cc -= cc_offset; - --wa1; - --wa2; - - /* Function Body */ - for (k = 1; k <= l1; ++k) { - cr2 = cc_ref(1, k, 2) + cc_ref(1, k, 3); - ch_ref(1, 1, k) = cc_ref(1, k, 1) + cr2; - ch_ref(1, 3, k) = taui * (cc_ref(1, k, 3) - cc_ref(1, k, 2)); - ch_ref(ido, 2, k) = cc_ref(1, k, 1) + taur * cr2; - } - if (ido == 1) { - return; - } - idp2 = ido + 2; - for (k = 1; k <= l1; ++k) { - for (i = 3; i <= ido; i += 2) { - ic = idp2 - i; - dr2 = wa1[i - 2] * cc_ref(i - 1, k, 2) + wa1[i - 1] * - cc_ref(i, k, 2); - di2 = wa1[i - 2] * cc_ref(i, k, 2) - wa1[i - 1] * cc_ref( - i - 1, k, 2); - dr3 = wa2[i - 2] * cc_ref(i - 1, k, 3) + wa2[i - 1] * - cc_ref(i, k, 3); - di3 = wa2[i - 2] * cc_ref(i, k, 3) - wa2[i - 1] * cc_ref( - i - 1, k, 3); - cr2 = dr2 + dr3; - ci2 = di2 + di3; - ch_ref(i - 1, 1, k) = cc_ref(i - 1, k, 1) + cr2; - ch_ref(i, 1, k) = cc_ref(i, k, 1) + ci2; - tr2 = cc_ref(i - 1, k, 1) + taur * cr2; - ti2 = cc_ref(i, k, 1) + taur * ci2; - tr3 = taui * (di2 - di3); - ti3 = taui * (dr3 - dr2); - ch_ref(i - 1, 3, k) = tr2 + tr3; - ch_ref(ic - 1, 2, k) = tr2 - tr3; - ch_ref(i, 3, k) = ti2 + ti3; - ch_ref(ic, 2, k) = ti3 - ti2; - } - } -} /* radf3 */ - -#undef ch_ref -#undef cc_ref - - -static void radf4(integer ido, integer l1, const real *cc, real *ch, - const real *wa1, const real *wa2, const real *wa3) -{ - /* Initialized data */ - - static const real hsqt2 = .7071067811865475f; - - /* System generated locals */ - integer cc_offset, ch_offset; - - /* Local variables */ - integer i, k, ic; - real ci2, ci3, ci4, cr2, cr3, cr4, ti1, ti2, ti3, ti4, tr1, tr2, tr3, tr4; - integer idp2; - - -#define cc_ref(a_1,a_2,a_3) cc[((a_3)*l1 + (a_2))*ido + a_1] -#define ch_ref(a_1,a_2,a_3) ch[((a_3)*4 + (a_2))*ido + a_1] - - /* Parameter adjustments */ - ch_offset = 1 + ido * 5; - ch -= ch_offset; - cc_offset = 1 + ido * (1 + l1); - cc -= cc_offset; - --wa1; - --wa2; - --wa3; - - /* Function Body */ - for (k = 1; k <= l1; ++k) { - tr1 = cc_ref(1, k, 2) + cc_ref(1, k, 4); - tr2 = cc_ref(1, k, 1) + cc_ref(1, k, 3); - ch_ref(1, 1, k) = tr1 + tr2; - ch_ref(ido, 4, k) = tr2 - tr1; - ch_ref(ido, 2, k) = cc_ref(1, k, 1) - cc_ref(1, k, 3); - ch_ref(1, 3, k) = cc_ref(1, k, 4) - cc_ref(1, k, 2); - } - if (ido < 2) return; - if (ido != 2) { - idp2 = ido + 2; - for (k = 1; k <= l1; ++k) { - for (i = 3; i <= ido; i += 2) { - ic = idp2 - i; - cr2 = wa1[i - 2] * cc_ref(i - 1, k, 2) + wa1[i - 1] * - cc_ref(i, k, 2); - ci2 = wa1[i - 2] * cc_ref(i, k, 2) - wa1[i - 1] * cc_ref( - i - 1, k, 2); - cr3 = wa2[i - 2] * cc_ref(i - 1, k, 3) + wa2[i - 1] * - cc_ref(i, k, 3); - ci3 = wa2[i - 2] * cc_ref(i, k, 3) - wa2[i - 1] * cc_ref( - i - 1, k, 3); - cr4 = wa3[i - 2] * cc_ref(i - 1, k, 4) + wa3[i - 1] * - cc_ref(i, k, 4); - ci4 = wa3[i - 2] * cc_ref(i, k, 4) - wa3[i - 1] * cc_ref( - i - 1, k, 4); - tr1 = cr2 + cr4; - tr4 = cr4 - cr2; - ti1 = ci2 + ci4; - ti4 = ci2 - ci4; - ti2 = cc_ref(i, k, 1) + ci3; - ti3 = cc_ref(i, k, 1) - ci3; - tr2 = cc_ref(i - 1, k, 1) + cr3; - tr3 = cc_ref(i - 1, k, 1) - cr3; - ch_ref(i - 1, 1, k) = tr1 + tr2; - ch_ref(ic - 1, 4, k) = tr2 - tr1; - ch_ref(i, 1, k) = ti1 + ti2; - ch_ref(ic, 4, k) = ti1 - ti2; - ch_ref(i - 1, 3, k) = ti4 + tr3; - ch_ref(ic - 1, 2, k) = tr3 - ti4; - ch_ref(i, 3, k) = tr4 + ti3; - ch_ref(ic, 2, k) = tr4 - ti3; - } - } - if (ido % 2 == 1) { - return; - } - } - for (k = 1; k <= l1; ++k) { - ti1 = -hsqt2 * (cc_ref(ido, k, 2) + cc_ref(ido, k, 4)); - tr1 = hsqt2 * (cc_ref(ido, k, 2) - cc_ref(ido, k, 4)); - ch_ref(ido, 1, k) = tr1 + cc_ref(ido, k, 1); - ch_ref(ido, 3, k) = cc_ref(ido, k, 1) - tr1; - ch_ref(1, 2, k) = ti1 - cc_ref(ido, k, 3); - ch_ref(1, 4, k) = ti1 + cc_ref(ido, k, 3); - } -} /* radf4 */ - -#undef ch_ref -#undef cc_ref - - -static void radf5(integer ido, integer l1, const real *cc, real *ch, - const real *wa1, const real *wa2, const real *wa3, const real *wa4) -{ - /* Initialized data */ - - static const real tr11 = .309016994374947f; - static const real ti11 = .951056516295154f; - static const real tr12 = -.809016994374947f; - static const real ti12 = .587785252292473f; - - /* System generated locals */ - integer cc_offset, ch_offset; - - /* Local variables */ - integer i, k, ic; - real ci2, di2, ci4, ci5, di3, di4, di5, ci3, cr2, cr3, dr2, dr3, dr4, dr5, - cr5, cr4, ti2, ti3, ti5, ti4, tr2, tr3, tr4, tr5; - integer idp2; - - -#define cc_ref(a_1,a_2,a_3) cc[((a_3)*l1 + (a_2))*ido + a_1] -#define ch_ref(a_1,a_2,a_3) ch[((a_3)*5 + (a_2))*ido + a_1] - - /* Parameter adjustments */ - ch_offset = 1 + ido * 6; - ch -= ch_offset; - cc_offset = 1 + ido * (1 + l1); - cc -= cc_offset; - --wa1; - --wa2; - --wa3; - --wa4; - - /* Function Body */ - for (k = 1; k <= l1; ++k) { - cr2 = cc_ref(1, k, 5) + cc_ref(1, k, 2); - ci5 = cc_ref(1, k, 5) - cc_ref(1, k, 2); - cr3 = cc_ref(1, k, 4) + cc_ref(1, k, 3); - ci4 = cc_ref(1, k, 4) - cc_ref(1, k, 3); - ch_ref(1, 1, k) = cc_ref(1, k, 1) + cr2 + cr3; - ch_ref(ido, 2, k) = cc_ref(1, k, 1) + tr11 * cr2 + tr12 * cr3; - ch_ref(1, 3, k) = ti11 * ci5 + ti12 * ci4; - ch_ref(ido, 4, k) = cc_ref(1, k, 1) + tr12 * cr2 + tr11 * cr3; - ch_ref(1, 5, k) = ti12 * ci5 - ti11 * ci4; - } - if (ido == 1) { - return; - } - idp2 = ido + 2; - for (k = 1; k <= l1; ++k) { - for (i = 3; i <= ido; i += 2) { - ic = idp2 - i; - dr2 = wa1[i - 2] * cc_ref(i - 1, k, 2) + wa1[i - 1] * cc_ref(i, k, 2); - di2 = wa1[i - 2] * cc_ref(i, k, 2) - wa1[i - 1] * cc_ref(i - 1, k, 2); - dr3 = wa2[i - 2] * cc_ref(i - 1, k, 3) + wa2[i - 1] * cc_ref(i, k, 3); - di3 = wa2[i - 2] * cc_ref(i, k, 3) - wa2[i - 1] * cc_ref(i - 1, k, 3); - dr4 = wa3[i - 2] * cc_ref(i - 1, k, 4) + wa3[i - 1] * cc_ref(i, k, 4); - di4 = wa3[i - 2] * cc_ref(i, k, 4) - wa3[i - 1] * cc_ref(i - 1, k, 4); - dr5 = wa4[i - 2] * cc_ref(i - 1, k, 5) + wa4[i - 1] * cc_ref(i, k, 5); - di5 = wa4[i - 2] * cc_ref(i, k, 5) - wa4[i - 1] * cc_ref(i - 1, k, 5); - cr2 = dr2 + dr5; - ci5 = dr5 - dr2; - cr5 = di2 - di5; - ci2 = di2 + di5; - cr3 = dr3 + dr4; - ci4 = dr4 - dr3; - cr4 = di3 - di4; - ci3 = di3 + di4; - ch_ref(i - 1, 1, k) = cc_ref(i - 1, k, 1) + cr2 + cr3; - ch_ref(i, 1, k) = cc_ref(i, k, 1) + ci2 + ci3; - tr2 = cc_ref(i - 1, k, 1) + tr11 * cr2 + tr12 * cr3; - ti2 = cc_ref(i, k, 1) + tr11 * ci2 + tr12 * ci3; - tr3 = cc_ref(i - 1, k, 1) + tr12 * cr2 + tr11 * cr3; - ti3 = cc_ref(i, k, 1) + tr12 * ci2 + tr11 * ci3; - tr5 = ti11 * cr5 + ti12 * cr4; - ti5 = ti11 * ci5 + ti12 * ci4; - tr4 = ti12 * cr5 - ti11 * cr4; - ti4 = ti12 * ci5 - ti11 * ci4; - ch_ref(i - 1, 3, k) = tr2 + tr5; - ch_ref(ic - 1, 2, k) = tr2 - tr5; - ch_ref(i, 3, k) = ti2 + ti5; - ch_ref(ic, 2, k) = ti5 - ti2; - ch_ref(i - 1, 5, k) = tr3 + tr4; - ch_ref(ic - 1, 4, k) = tr3 - tr4; - ch_ref(i, 5, k) = ti3 + ti4; - ch_ref(ic, 4, k) = ti4 - ti3; - } - } -} /* radf5 */ - -#undef ch_ref -#undef cc_ref - - -static void radfg(integer ido, integer ip, integer l1, integer idl1, - real *cc, real *c1, real *c2, real *ch, real *ch2, const real *wa) -{ - /* System generated locals */ - integer ch_offset, cc_offset, - c1_offset, c2_offset, ch2_offset; - - /* Local variables */ - integer i, j, k, l, j2, ic, jc, lc, ik, is; - real dc2, ai1, ai2, ar1, ar2, ds2; - integer nbd; - real dcp, arg, dsp, ar1h, ar2h; - integer idp2, ipp2, idij, ipph; - - -#define c1_ref(a_1,a_2,a_3) c1[((a_3)*l1 + (a_2))*ido + a_1] -#define c2_ref(a_1,a_2) c2[(a_2)*idl1 + a_1] -#define cc_ref(a_1,a_2,a_3) cc[((a_3)*ip + (a_2))*ido + a_1] -#define ch_ref(a_1,a_2,a_3) ch[((a_3)*l1 + (a_2))*ido + a_1] -#define ch2_ref(a_1,a_2) ch2[(a_2)*idl1 + a_1] - - /* Parameter adjustments */ - ch_offset = 1 + ido * (1 + l1); - ch -= ch_offset; - c1_offset = 1 + ido * (1 + l1); - c1 -= c1_offset; - cc_offset = 1 + ido * (1 + ip); - cc -= cc_offset; - ch2_offset = 1 + idl1; - ch2 -= ch2_offset; - c2_offset = 1 + idl1; - c2 -= c2_offset; - --wa; - - /* Function Body */ - arg = (2*M_PI) / (real) (ip); - dcp = cos(arg); - dsp = sin(arg); - ipph = (ip + 1) / 2; - ipp2 = ip + 2; - idp2 = ido + 2; - nbd = (ido - 1) / 2; - if (ido == 1) { - for (ik = 1; ik <= idl1; ++ik) { - c2_ref(ik, 1) = ch2_ref(ik, 1); - } - } else { - for (ik = 1; ik <= idl1; ++ik) { - ch2_ref(ik, 1) = c2_ref(ik, 1); - } - for (j = 2; j <= ip; ++j) { - for (k = 1; k <= l1; ++k) { - ch_ref(1, k, j) = c1_ref(1, k, j); - } - } - if (nbd <= l1) { - is = -(ido); - for (j = 2; j <= ip; ++j) { - is += ido; - idij = is; - for (i = 3; i <= ido; i += 2) { - idij += 2; - for (k = 1; k <= l1; ++k) { - ch_ref(i - 1, k, j) = wa[idij - 1] * c1_ref(i - 1, k, j) - + wa[idij] * c1_ref(i, k, j); - ch_ref(i, k, j) = wa[idij - 1] * c1_ref(i, k, j) - wa[ - idij] * c1_ref(i - 1, k, j); - } - } - } - } else { - is = -(ido); - for (j = 2; j <= ip; ++j) { - is += ido; - for (k = 1; k <= l1; ++k) { - idij = is; - for (i = 3; i <= ido; i += 2) { - idij += 2; - ch_ref(i - 1, k, j) = wa[idij - 1] * c1_ref(i - 1, k, j) - + wa[idij] * c1_ref(i, k, j); - ch_ref(i, k, j) = wa[idij - 1] * c1_ref(i, k, j) - wa[ - idij] * c1_ref(i - 1, k, j); - } - } - } - } - if (nbd >= l1) { - for (j = 2; j <= ipph; ++j) { - jc = ipp2 - j; - for (k = 1; k <= l1; ++k) { - for (i = 3; i <= ido; i += 2) { - c1_ref(i - 1, k, j) = ch_ref(i - 1, k, j) + ch_ref(i - - 1, k, jc); - c1_ref(i - 1, k, jc) = ch_ref(i, k, j) - ch_ref(i, k, - jc); - c1_ref(i, k, j) = ch_ref(i, k, j) + ch_ref(i, k, jc); - c1_ref(i, k, jc) = ch_ref(i - 1, k, jc) - ch_ref(i - 1, - k, j); - } - } - } - } else { - for (j = 2; j <= ipph; ++j) { - jc = ipp2 - j; - for (i = 3; i <= ido; i += 2) { - for (k = 1; k <= l1; ++k) { - c1_ref(i - 1, k, j) = ch_ref(i - 1, k, j) + ch_ref(i - - 1, k, jc); - c1_ref(i - 1, k, jc) = ch_ref(i, k, j) - ch_ref(i, k, - jc); - c1_ref(i, k, j) = ch_ref(i, k, j) + ch_ref(i, k, jc); - c1_ref(i, k, jc) = ch_ref(i - 1, k, jc) - ch_ref(i - 1, - k, j); - } - } - } - } - } - for (j = 2; j <= ipph; ++j) { - jc = ipp2 - j; - for (k = 1; k <= l1; ++k) { - c1_ref(1, k, j) = ch_ref(1, k, j) + ch_ref(1, k, jc); - c1_ref(1, k, jc) = ch_ref(1, k, jc) - ch_ref(1, k, j); - } - } - - ar1 = 1.f; - ai1 = 0.f; - for (l = 2; l <= ipph; ++l) { - lc = ipp2 - l; - ar1h = dcp * ar1 - dsp * ai1; - ai1 = dcp * ai1 + dsp * ar1; - ar1 = ar1h; - for (ik = 1; ik <= idl1; ++ik) { - ch2_ref(ik, l) = c2_ref(ik, 1) + ar1 * c2_ref(ik, 2); - ch2_ref(ik, lc) = ai1 * c2_ref(ik, ip); - } - dc2 = ar1; - ds2 = ai1; - ar2 = ar1; - ai2 = ai1; - for (j = 3; j <= ipph; ++j) { - jc = ipp2 - j; - ar2h = dc2 * ar2 - ds2 * ai2; - ai2 = dc2 * ai2 + ds2 * ar2; - ar2 = ar2h; - for (ik = 1; ik <= idl1; ++ik) { - ch2_ref(ik, l) = ch2_ref(ik, l) + ar2 * c2_ref(ik, j); - ch2_ref(ik, lc) = ch2_ref(ik, lc) + ai2 * c2_ref(ik, jc); - } - } - } - for (j = 2; j <= ipph; ++j) { - for (ik = 1; ik <= idl1; ++ik) { - ch2_ref(ik, 1) = ch2_ref(ik, 1) + c2_ref(ik, j); - } - } - - if (ido >= l1) { - for (k = 1; k <= l1; ++k) { - for (i = 1; i <= ido; ++i) { - cc_ref(i, 1, k) = ch_ref(i, k, 1); - } - } - } else { - for (i = 1; i <= ido; ++i) { - for (k = 1; k <= l1; ++k) { - cc_ref(i, 1, k) = ch_ref(i, k, 1); - } - } - } - for (j = 2; j <= ipph; ++j) { - jc = ipp2 - j; - j2 = j + j; - for (k = 1; k <= l1; ++k) { - cc_ref(ido, j2 - 2, k) = ch_ref(1, k, j); - cc_ref(1, j2 - 1, k) = ch_ref(1, k, jc); - } - } - if (ido == 1) { - return; - } - if (nbd >= l1) { - for (j = 2; j <= ipph; ++j) { - jc = ipp2 - j; - j2 = j + j; - for (k = 1; k <= l1; ++k) { - for (i = 3; i <= ido; i += 2) { - ic = idp2 - i; - cc_ref(i - 1, j2 - 1, k) = ch_ref(i - 1, k, j) + ch_ref( - i - 1, k, jc); - cc_ref(ic - 1, j2 - 2, k) = ch_ref(i - 1, k, j) - ch_ref( - i - 1, k, jc); - cc_ref(i, j2 - 1, k) = ch_ref(i, k, j) + ch_ref(i, k, - jc); - cc_ref(ic, j2 - 2, k) = ch_ref(i, k, jc) - ch_ref(i, k, j) - ; - } - } - } - } else { - for (j = 2; j <= ipph; ++j) { - jc = ipp2 - j; - j2 = j + j; - for (i = 3; i <= ido; i += 2) { - ic = idp2 - i; - for (k = 1; k <= l1; ++k) { - cc_ref(i - 1, j2 - 1, k) = ch_ref(i - 1, k, j) + ch_ref( - i - 1, k, jc); - cc_ref(ic - 1, j2 - 2, k) = ch_ref(i - 1, k, j) - ch_ref( - i - 1, k, jc); - cc_ref(i, j2 - 1, k) = ch_ref(i, k, j) + ch_ref(i, k, - jc); - cc_ref(ic, j2 - 2, k) = ch_ref(i, k, jc) - ch_ref(i, k, j) - ; - } - } - } - } -} /* radfg */ - -#undef ch2_ref -#undef ch_ref -#undef cc_ref -#undef c2_ref -#undef c1_ref - - -static void cfftb1(integer n, real *c, real *ch, const real *wa, integer *ifac) -{ - integer i, k1, l1, l2, na, nf, ip, iw, ix2, ix3, ix4, nac, ido, - idl1, idot; - - /* Function Body */ - nf = ifac[1]; - na = 0; - l1 = 1; - iw = 0; - for (k1 = 1; k1 <= nf; ++k1) { - ip = ifac[k1 + 1]; - l2 = ip * l1; - ido = n / l2; - idot = ido + ido; - idl1 = idot * l1; - switch (ip) { - case 4: - ix2 = iw + idot; - ix3 = ix2 + idot; - passb4(idot, l1, na?ch:c, na?c:ch, &wa[iw], &wa[ix2], &wa[ix3]); - na = 1 - na; - break; - case 2: - passb2(idot, l1, na?ch:c, na?c:ch, &wa[iw]); - na = 1 - na; - break; - case 3: - ix2 = iw + idot; - passb3(idot, l1, na?ch:c, na?c:ch, &wa[iw], &wa[ix2]); - na = 1 - na; - break; - case 5: - ix2 = iw + idot; - ix3 = ix2 + idot; - ix4 = ix3 + idot; - passfb5(idot, l1, na?ch:c, na?c:ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], +1); - na = 1 - na; - break; - default: - if (na == 0) { - passfb(&nac, idot, ip, l1, idl1, c, c, c, ch, ch, &wa[iw], +1); - } else { - passfb(&nac, idot, ip, l1, idl1, ch, ch, ch, c, c, &wa[iw], +1); - } - if (nac != 0) { - na = 1 - na; - } - break; - } - l1 = l2; - iw += (ip - 1) * idot; - } - if (na == 0) { - return; - } - for (i = 0; i < 2*n; ++i) { - c[i] = ch[i]; - } -} /* cfftb1 */ - -void cfftb(integer n, real *c, real *wsave) -{ - integer iw1, iw2; - - /* Parameter adjustments */ - --wsave; - --c; - - /* Function Body */ - if (n == 1) { - return; - } - iw1 = 2*n + 1; - iw2 = iw1 + 2*n; - cfftb1(n, &c[1], &wsave[1], &wsave[iw1], (int*)&wsave[iw2]); -} /* cfftb */ - -static void cfftf1(integer n, real *c, real *ch, const real *wa, integer *ifac) -{ - /* Local variables */ - integer i, k1, l1, l2, na, nf, ip, iw, ix2, ix3, ix4, nac, ido, - idl1, idot; - - /* Function Body */ - nf = ifac[1]; - na = 0; - l1 = 1; - iw = 0; - for (k1 = 1; k1 <= nf; ++k1) { - ip = ifac[k1 + 1]; - l2 = ip * l1; - ido = n / l2; - idot = ido + ido; - idl1 = idot * l1; - switch (ip) { - case 4: - ix2 = iw + idot; - ix3 = ix2 + idot; - passf4(idot, l1, na?ch:c, na?c:ch, &wa[iw], &wa[ix2], &wa[ix3]); - na = 1 - na; - break; - case 2: - passf2(idot, l1, na?ch:c, na?c:ch, &wa[iw]); - na = 1 - na; - break; - case 3: - ix2 = iw + idot; - passf3(idot, l1, na?ch:c, na?c:ch, &wa[iw], &wa[ix2]); - na = 1 - na; - break; - case 5: - ix2 = iw + idot; - ix3 = ix2 + idot; - ix4 = ix3 + idot; - passfb5(idot, l1, na?ch:c, na?c:ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], -1); - na = 1 - na; - break; - default: - if (na == 0) { - passfb(&nac, idot, ip, l1, idl1, c, c, c, ch, ch, &wa[iw], -1); - } else { - passfb(&nac, idot, ip, l1, idl1, ch, ch, ch, c, c, &wa[iw], -1); - } - if (nac != 0) { - na = 1 - na; - } - break; - } - l1 = l2; - iw += (ip - 1)*idot; - } - if (na == 0) { - return; - } - for (i = 0; i < 2*n; ++i) { - c[i] = ch[i]; - } -} /* cfftf1 */ - -void cfftf(integer n, real *c, real *wsave) -{ - integer iw1, iw2; - - /* Parameter adjustments */ - --wsave; - --c; - - /* Function Body */ - if (n == 1) { - return; - } - iw1 = 2*n + 1; - iw2 = iw1 + 2*n; - cfftf1(n, &c[1], &wsave[1], &wsave[iw1], (int*)&wsave[iw2]); -} /* cfftf */ - -static int decompose(integer n, integer *ifac, integer ntryh[4]) { - integer ntry=0, nl = n, nf = 0, nq, nr, i, j = 0; - do { - if (j < 4) { - ntry = ntryh[j]; - } else { - ntry += 2; - } - ++j; - L104: - nq = nl / ntry; - nr = nl - ntry * nq; - if (nr != 0) continue; - ++nf; - ifac[nf + 2] = ntry; - nl = nq; - if (ntry == 2 && nf != 1) { - for (i = 2; i <= nf; ++i) { - integer ib = nf - i + 2; - ifac[ib + 2] = ifac[ib + 1]; - } - ifac[3] = 2; - } - if (nl != 1) { - goto L104; - } - } while (nl != 1); - ifac[1] = n; - ifac[2] = nf; - return nf; -} - -static void cffti1(integer n, real *wa, integer *ifac) -{ - static integer ntryh[4] = { 3,4,2,5 }; - - /* Local variables */ - integer i, j, i1, k1, l1, l2; - real fi; - integer ld, ii, nf, ip; - real arg; - integer ido, ipm; - real argh; - integer idot; - real argld; - - /* Parameter adjustments */ - --ifac; - --wa; - - nf = decompose(n, ifac, ntryh); - - argh = (2*M_PI) / (real) (n); - i = 2; - l1 = 1; - for (k1 = 1; k1 <= nf; ++k1) { - ip = ifac[k1 + 2]; - ld = 0; - l2 = l1 * ip; - ido = n / l2; - idot = ido + ido + 2; - ipm = ip - 1; - for (j = 1; j <= ipm; ++j) { - i1 = i; - wa[i - 1] = 1.f; - wa[i] = 0.f; - ld += l1; - fi = 0.f; - argld = (real) ld * argh; - for (ii = 4; ii <= idot; ii += 2) { - i += 2; - fi += 1.f; - arg = fi * argld; - wa[i - 1] = cos(arg); - wa[i] = sin(arg); - } - if (ip > 5) { - wa[i1 - 1] = wa[i - 1]; - wa[i1] = wa[i]; - }; - } - l1 = l2; - } -} /* cffti1 */ - -void cffti(integer n, real *wsave) -{ - integer iw1, iw2; - /* Parameter adjustments */ - --wsave; - - /* Function Body */ - if (n == 1) { - return; - } - iw1 = 2*n + 1; - iw2 = iw1 + 2*n; - cffti1(n, &wsave[iw1], (int*)&wsave[iw2]); - return; -} /* cffti */ - -static void rfftb1(integer n, real *c, real *ch, const real *wa, integer *ifac) -{ - /* Local variables */ - integer i, k1, l1, l2, na, nf, ip, iw, ix2, ix3, ix4, ido, idl1; - - /* Function Body */ - nf = ifac[1]; - na = 0; - l1 = 1; - iw = 0; - for (k1 = 1; k1 <= nf; ++k1) { - ip = ifac[k1 + 1]; - l2 = ip * l1; - ido = n / l2; - idl1 = ido * l1; - switch (ip) { - case 4: - ix2 = iw + ido; - ix3 = ix2 + ido; - radb4(ido, l1, na?ch:c, na?c:ch, &wa[iw], &wa[ix2], &wa[ix3]); - na = 1 - na; - break; - case 2: - radb2(ido, l1, na?ch:c, na?c:ch, &wa[iw]); - na = 1 - na; - break; - case 3: - ix2 = iw + ido; - radb3(ido, l1, na?ch:c, na?c:ch, &wa[iw], &wa[ix2]); - na = 1 - na; - break; - case 5: - ix2 = iw + ido; - ix3 = ix2 + ido; - ix4 = ix3 + ido; - radb5(ido, l1, na?ch:c, na?c:ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4]); - na = 1 - na; - break; - default: - if (na == 0) { - radbg(ido, ip, l1, idl1, c, c, c, ch, ch, &wa[iw]); - } else { - radbg(ido, ip, l1, idl1, ch, ch, ch, c, c, &wa[iw]); - } - if (ido == 1) { - na = 1 - na; - } - break; - } - l1 = l2; - iw += (ip - 1) * ido; - } - if (na == 0) { - return; - } - for (i = 0; i < n; ++i) { - c[i] = ch[i]; - } -} /* rfftb1 */ - -static void rfftf1(integer n, real *c, real *ch, const real *wa, integer *ifac) -{ - /* Local variables */ - integer i, k1, l1, l2, na, kh, nf, ip, iw, ix2, ix3, ix4, ido, idl1; - - /* Function Body */ - nf = ifac[1]; - na = 1; - l2 = n; - iw = n-1; - for (k1 = 1; k1 <= nf; ++k1) { - kh = nf - k1; - ip = ifac[kh + 2]; - l1 = l2 / ip; - ido = n / l2; - idl1 = ido * l1; - iw -= (ip - 1) * ido; - na = 1 - na; - switch (ip) { - case 4: - ix2 = iw + ido; - ix3 = ix2 + ido; - radf4(ido, l1, na ? ch : c, na ? c : ch, &wa[iw], &wa[ix2], &wa[ix3]); - break; - case 2: - radf2(ido, l1, na ? ch : c, na ? c : ch, &wa[iw]); - break; - case 3: - ix2 = iw + ido; - radf3(ido, l1, na ? ch : c, na ? c : ch, &wa[iw], &wa[ix2]); - break; - case 5: - ix2 = iw + ido; - ix3 = ix2 + ido; - ix4 = ix3 + ido; - radf5(ido, l1, na ? ch : c, na ? c : ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4]); - break; - default: - if (ido == 1) { - na = 1 - na; - } - if (na == 0) { - radfg(ido, ip, l1, idl1, c, c, c, ch, ch, &wa[iw]); - na = 1; - } else { - radfg(ido, ip, l1, idl1, ch, ch, ch, c, c, &wa[iw]); - na = 0; - } - break; - } - l2 = l1; - } - if (na == 1) { - return; - } - for (i = 0; i < n; ++i) { - c[i] = ch[i]; - } -} - -void rfftb(integer n, real *r, real *wsave) -{ - - /* Parameter adjustments */ - --wsave; - --r; - - /* Function Body */ - if (n == 1) { - return; - } - rfftb1(n, &r[1], &wsave[1], &wsave[n + 1], (int*)&wsave[(n << 1) + 1]); -} /* rfftb */ - -static void rffti1(integer n, real *wa, integer *ifac) -{ - static integer ntryh[4] = { 4,2,3,5 }; - - /* Local variables */ - integer i, j, k1, l1, l2; - real fi; - integer ld, ii, nf, ip, is; - real arg; - integer ido, ipm; - integer nfm1; - real argh; - real argld; - - /* Parameter adjustments */ - --ifac; - --wa; - - nf = decompose(n, ifac, ntryh); - - argh = (2*M_PI) / (real) (n); - is = 0; - nfm1 = nf - 1; - l1 = 1; - if (nfm1 == 0) { - return; - } - for (k1 = 1; k1 <= nfm1; ++k1) { - ip = ifac[k1 + 2]; - ld = 0; - l2 = l1 * ip; - ido = n / l2; - ipm = ip - 1; - for (j = 1; j <= ipm; ++j) { - ld += l1; - i = is; - argld = (real) ld * argh; - fi = 0.f; - for (ii = 3; ii <= ido; ii += 2) { - i += 2; - fi += 1.f; - arg = fi * argld; - wa[i - 1] = cos(arg); - wa[i] = sin(arg); - } - is += ido; - } - l1 = l2; - } -} /* rffti1 */ - -void rfftf(integer n, real *r, real *wsave) -{ - - /* Parameter adjustments */ - --wsave; - --r; - - /* Function Body */ - if (n == 1) { - return; - } - rfftf1(n, &r[1], &wsave[1], &wsave[n + 1], (int*)&wsave[(n << 1) + 1]); -} /* rfftf */ - -void rffti(integer n, real *wsave) -{ - /* Parameter adjustments */ - --wsave; - - /* Function Body */ - if (n == 1) { - return; - } - rffti1(n, &wsave[n + 1], (int*)&wsave[(n << 1) + 1]); - return; -} /* rffti */ - -static void cosqb1(integer n, real *x, real *w, real *xh) -{ - /* Local variables */ - integer i, k, kc, np2, ns2; - real xim1; - integer modn; - - /* Parameter adjustments */ - --xh; - --w; - --x; - - /* Function Body */ - ns2 = (n + 1) / 2; - np2 = n + 2; - for (i = 3; i <= n; i += 2) { - xim1 = x[i - 1] + x[i]; - x[i] -= x[i - 1]; - x[i - 1] = xim1; - } - x[1] += x[1]; - modn = n % 2; - if (modn == 0) { - x[n] += x[n]; - } - rfftb(n, &x[1], &xh[1]); - for (k = 2; k <= ns2; ++k) { - kc = np2 - k; - xh[k] = w[k - 1] * x[kc] + w[kc - 1] * x[k]; - xh[kc] = w[k - 1] * x[k] - w[kc - 1] * x[kc]; - } - if (modn == 0) { - x[ns2 + 1] = w[ns2] * (x[ns2 + 1] + x[ns2 + 1]); - } - for (k = 2; k <= ns2; ++k) { - kc = np2 - k; - x[k] = xh[k] + xh[kc]; - x[kc] = xh[k] - xh[kc]; - } - x[1] += x[1]; -} /* cosqb1 */ - -void cosqb(integer n, real *x, real *wsave) -{ - static const real tsqrt2 = 2.82842712474619f; - - /* Local variables */ - real x1; - - /* Parameter adjustments */ - --wsave; - --x; - - if (n < 2) { - x[1] *= 4.f; - } else if (n == 2) { - x1 = (x[1] + x[2]) * 4.f; - x[2] = tsqrt2 * (x[1] - x[2]); - x[1] = x1; - } else { - cosqb1(n, &x[1], &wsave[1], &wsave[n + 1]); - } -} /* cosqb */ - -static void cosqf1(integer n, real *x, real *w, real *xh) -{ - /* Local variables */ - integer i, k, kc, np2, ns2; - real xim1; - integer modn; - - /* Parameter adjustments */ - --xh; - --w; - --x; - - /* Function Body */ - ns2 = (n + 1) / 2; - np2 = n + 2; - for (k = 2; k <= ns2; ++k) { - kc = np2 - k; - xh[k] = x[k] + x[kc]; - xh[kc] = x[k] - x[kc]; - } - modn = n % 2; - if (modn == 0) { - xh[ns2 + 1] = x[ns2 + 1] + x[ns2 + 1]; - } - for (k = 2; k <= ns2; ++k) { - kc = np2 - k; - x[k] = w[k - 1] * xh[kc] + w[kc - 1] * xh[k]; - x[kc] = w[k - 1] * xh[k] - w[kc - 1] * xh[kc]; - } - if (modn == 0) { - x[ns2 + 1] = w[ns2] * xh[ns2 + 1]; - } - rfftf(n, &x[1], &xh[1]); - for (i = 3; i <= n; i += 2) { - xim1 = x[i - 1] - x[i]; - x[i] = x[i - 1] + x[i]; - x[i - 1] = xim1; - } -} /* cosqf1 */ - -void cosqf(integer n, real *x, real *wsave) -{ - static const real sqrt2 = 1.4142135623731f; - - /* Local variables */ - real tsqx; - - /* Parameter adjustments */ - --wsave; - --x; - - if (n == 2) { - tsqx = sqrt2 * x[2]; - x[2] = x[1] - tsqx; - x[1] += tsqx; - } else if (n > 2) { - cosqf1(n, &x[1], &wsave[1], &wsave[n + 1]); - } -} /* cosqf */ - -void cosqi(integer n, real *wsave) -{ - /* Local variables */ - integer k; - real fk, dt; - - /* Parameter adjustments */ - --wsave; - - dt = M_PI/2 / (real) (n); - fk = 0.f; - for (k = 1; k <= n; ++k) { - fk += 1.f; - wsave[k] = cos(fk * dt); - } - rffti(n, &wsave[n + 1]); -} /* cosqi */ - -void cost(integer n, real *x, real *wsave) -{ - /* Local variables */ - integer i, k; - real c1, t1, t2; - integer kc; - real xi; - integer nm1, np1; - real x1h; - integer ns2; - real tx2, x1p3, xim2; - integer modn; - - /* Parameter adjustments */ - --wsave; - --x; - - /* Function Body */ - nm1 = n - 1; - np1 = n + 1; - ns2 = n / 2; - if (n < 2) { - } else if (n == 2) { - x1h = x[1] + x[2]; - x[2] = x[1] - x[2]; - x[1] = x1h; - } else if (n == 3) { - x1p3 = x[1] + x[3]; - tx2 = x[2] + x[2]; - x[2] = x[1] - x[3]; - x[1] = x1p3 + tx2; - x[3] = x1p3 - tx2; - } else { - c1 = x[1] - x[n]; - x[1] += x[n]; - for (k = 2; k <= ns2; ++k) { - kc = np1 - k; - t1 = x[k] + x[kc]; - t2 = x[k] - x[kc]; - c1 += wsave[kc] * t2; - t2 = wsave[k] * t2; - x[k] = t1 - t2; - x[kc] = t1 + t2; - } - modn = n % 2; - if (modn != 0) { - x[ns2 + 1] += x[ns2 + 1]; - } - rfftf(nm1, &x[1], &wsave[n + 1]); - xim2 = x[2]; - x[2] = c1; - for (i = 4; i <= n; i += 2) { - xi = x[i]; - x[i] = x[i - 2] - x[i - 1]; - x[i - 1] = xim2; - xim2 = xi; - } - if (modn != 0) { - x[n] = xim2; - } - } -} /* cost */ - -void costi(integer n, real *wsave) -{ - /* Initialized data */ - - /* Local variables */ - integer k, kc; - real fk, dt; - integer nm1, np1, ns2; - - /* Parameter adjustments */ - --wsave; - - /* Function Body */ - if (n <= 3) { - return; - } - nm1 = n - 1; - np1 = n + 1; - ns2 = n / 2; - dt = M_PI / (real) nm1; - fk = 0.f; - for (k = 2; k <= ns2; ++k) { - kc = np1 - k; - fk += 1.f; - wsave[k] = sin(fk * dt) * 2.f; - wsave[kc] = cos(fk * dt) * 2.f; - } - rffti(nm1, &wsave[n + 1]); -} /* costi */ - -void sinqb(integer n, real *x, real *wsave) -{ - /* Local variables */ - integer k, kc, ns2; - real xhold; - - /* Parameter adjustments */ - --wsave; - --x; - - /* Function Body */ - if (n <= 1) { - x[1] *= 4.f; - return; - } - ns2 = n / 2; - for (k = 2; k <= n; k += 2) { - x[k] = -x[k]; - } - cosqb(n, &x[1], &wsave[1]); - for (k = 1; k <= ns2; ++k) { - kc = n - k; - xhold = x[k]; - x[k] = x[kc + 1]; - x[kc + 1] = xhold; - } -} /* sinqb */ - -void sinqf(integer n, real *x, real *wsave) -{ - /* Local variables */ - integer k, kc, ns2; - real xhold; - - /* Parameter adjustments */ - --wsave; - --x; - - /* Function Body */ - if (n == 1) { - return; - } - ns2 = n / 2; - for (k = 1; k <= ns2; ++k) { - kc = n - k; - xhold = x[k]; - x[k] = x[kc + 1]; - x[kc + 1] = xhold; - } - cosqf(n, &x[1], &wsave[1]); - for (k = 2; k <= n; k += 2) { - x[k] = -x[k]; - } -} /* sinqf */ - -void sinqi(integer n, real *wsave) -{ - - /* Parameter adjustments */ - --wsave; - - /* Function Body */ - cosqi(n, &wsave[1]); -} /* sinqi */ - -static void sint1(integer n, real *war, real *was, real *xh, real * - x, integer *ifac) -{ - /* Initialized data */ - - static const real sqrt3 = 1.73205080756888f; - - /* Local variables */ - integer i, k; - real t1, t2; - integer kc, np1, ns2, modn; - real xhold; - - /* Parameter adjustments */ - --ifac; - --x; - --xh; - --was; - --war; - - /* Function Body */ - for (i = 1; i <= n; ++i) { - xh[i] = war[i]; - war[i] = x[i]; - } - - if (n < 2) { - xh[1] += xh[1]; - } else if (n == 2) { - xhold = sqrt3 * (xh[1] + xh[2]); - xh[2] = sqrt3 * (xh[1] - xh[2]); - xh[1] = xhold; - } else { - np1 = n + 1; - ns2 = n / 2; - x[1] = 0.f; - for (k = 1; k <= ns2; ++k) { - kc = np1 - k; - t1 = xh[k] - xh[kc]; - t2 = was[k] * (xh[k] + xh[kc]); - x[k + 1] = t1 + t2; - x[kc + 1] = t2 - t1; - } - modn = n % 2; - if (modn != 0) { - x[ns2 + 2] = xh[ns2 + 1] * 4.f; - } - rfftf1(np1, &x[1], &xh[1], &war[1], &ifac[1]); - xh[1] = x[1] * .5f; - for (i = 3; i <= n; i += 2) { - xh[i - 1] = -x[i]; - xh[i] = xh[i - 2] + x[i - 1]; - } - if (modn == 0) { - xh[n] = -x[n + 1]; - } - } - for (i = 1; i <= n; ++i) { - x[i] = war[i]; - war[i] = xh[i]; - } -} /* sint1 */ - -void sinti(integer n, real *wsave) -{ - /* Local variables */ - integer k; - real dt; - integer np1, ns2; - - /* Parameter adjustments */ - --wsave; - - /* Function Body */ - if (n <= 1) { - return; - } - ns2 = n / 2; - np1 = n + 1; - dt = M_PI / (real) np1; - for (k = 1; k <= ns2; ++k) { - wsave[k] = sin(k * dt) * 2.f; - } - rffti(np1, &wsave[ns2 + 1]); -} /* sinti */ - -void sint(integer n, real *x, real *wsave) -{ - integer np1, iw1, iw2, iw3; - - /* Parameter adjustments */ - --wsave; - --x; - - /* Function Body */ - np1 = n + 1; - iw1 = n / 2 + 1; - iw2 = iw1 + np1; - iw3 = iw2 + np1; - sint1(n, &x[1], &wsave[1], &wsave[iw1], &wsave[iw2], (int*)&wsave[iw3]); -} /* sint */ - -#ifdef TESTING_FFTPACK -#include - -int main(void) -{ - static integer nd[] = { 120,91,54,49,32,28,24,8,4,3,2 }; - - /* System generated locals */ - real r1, r2, r3; - f77complex q1, q2, q3; - - /* Local variables */ - integer i, j, k, n; - real w[2000], x[200], y[200], cf, fn, dt; - f77complex cx[200], cy[200]; - real xh[200]; - integer nz, nm1, np1, ns2; - real arg, tfn; - real sum, arg1, arg2; - real sum1, sum2, dcfb; - integer modn; - real rftb, rftf; - real sqrt2; - real rftfb; - real costt, sintt, dcfftb, dcfftf, cosqfb, costfb; - real sinqfb; - real sintfb; - real cosqbt, cosqft, sinqbt, sinqft; - - - - /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ - - /* VERSION 4 APRIL 1985 */ - - /* A TEST DRIVER FOR */ - /* A PACKAGE OF FORTRAN SUBPROGRAMS FOR THE FAST FOURIER */ - /* TRANSFORM OF PERIODIC AND OTHER SYMMETRIC SEQUENCES */ - - /* BY */ - - /* PAUL N SWARZTRAUBER */ - - /* NATIONAL CENTER FOR ATMOSPHERIC RESEARCH BOULDER,COLORADO 80307 */ - - /* WHICH IS SPONSORED BY THE NATIONAL SCIENCE FOUNDATION */ - - /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ - - - /* THIS PROGRAM TESTS THE PACKAGE OF FAST FOURIER */ - /* TRANSFORMS FOR BOTH COMPLEX AND REAL PERIODIC SEQUENCES AND */ - /* CERTIAN OTHER SYMMETRIC SEQUENCES THAT ARE LISTED BELOW. */ - - /* 1. RFFTI INITIALIZE RFFTF AND RFFTB */ - /* 2. RFFTF FORWARD TRANSFORM OF A REAL PERIODIC SEQUENCE */ - /* 3. RFFTB BACKWARD TRANSFORM OF A REAL COEFFICIENT ARRAY */ - - /* 4. EZFFTI INITIALIZE EZFFTF AND EZFFTB */ - /* 5. EZFFTF A SIMPLIFIED REAL PERIODIC FORWARD TRANSFORM */ - /* 6. EZFFTB A SIMPLIFIED REAL PERIODIC BACKWARD TRANSFORM */ - - /* 7. SINTI INITIALIZE SINT */ - /* 8. SINT SINE TRANSFORM OF A REAL ODD SEQUENCE */ - - /* 9. COSTI INITIALIZE COST */ - /* 10. COST COSINE TRANSFORM OF A REAL EVEN SEQUENCE */ - - /* 11. SINQI INITIALIZE SINQF AND SINQB */ - /* 12. SINQF FORWARD SINE TRANSFORM WITH ODD WAVE NUMBERS */ - /* 13. SINQB UNNORMALIZED INVERSE OF SINQF */ - - /* 14. COSQI INITIALIZE COSQF AND COSQB */ - /* 15. COSQF FORWARD COSINE TRANSFORM WITH ODD WAVE NUMBERS */ - /* 16. COSQB UNNORMALIZED INVERSE OF COSQF */ - - /* 17. CFFTI INITIALIZE CFFTF AND CFFTB */ - /* 18. CFFTF FORWARD TRANSFORM OF A COMPLEX PERIODIC SEQUENCE */ - /* 19. CFFTB UNNORMALIZED INVERSE OF CFFTF */ - - - sqrt2 = sqrt(2.f); - int all_ok = 1; - for (nz = 1; nz <= (int)(sizeof nd/sizeof nd[0]); ++nz) { - n = nd[nz - 1]; - modn = n % 2; - fn = (real) n; - tfn = fn + fn; - np1 = n + 1; - nm1 = n - 1; - for (j = 1; j <= np1; ++j) { - x[j - 1] = sin((real) j * sqrt2); - y[j - 1] = x[j - 1]; - xh[j - 1] = x[j - 1]; - } - - /* TEST SUBROUTINES RFFTI,RFFTF AND RFFTB */ - - rffti(n, w); - dt = (2*M_PI) / fn; - ns2 = (n + 1) / 2; - if (ns2 < 2) { - goto L104; - } - for (k = 2; k <= ns2; ++k) { - sum1 = 0.f; - sum2 = 0.f; - arg = (real) (k - 1) * dt; - for (i = 1; i <= n; ++i) { - arg1 = (real) (i - 1) * arg; - sum1 += x[i - 1] * cos(arg1); - sum2 += x[i - 1] * sin(arg1); - } - y[(k << 1) - 3] = sum1; - y[(k << 1) - 2] = -sum2; - } - L104: - sum1 = 0.f; - sum2 = 0.f; - for (i = 1; i <= nm1; i += 2) { - sum1 += x[i - 1]; - sum2 += x[i]; - } - if (modn == 1) { - sum1 += x[n - 1]; - } - y[0] = sum1 + sum2; - if (modn == 0) { - y[n - 1] = sum1 - sum2; - } - rfftf(n, x, w); - rftf = 0.f; - for (i = 1; i <= n; ++i) { - /* Computing MAX */ - r2 = rftf, r3 = (r1 = x[i - 1] - y[i - 1], fabs(r1)); - rftf = dmax(r2,r3); - x[i - 1] = xh[i - 1]; - } - rftf /= fn; - for (i = 1; i <= n; ++i) { - sum = x[0] * .5f; - arg = (real) (i - 1) * dt; - if (ns2 < 2) { - goto L108; - } - for (k = 2; k <= ns2; ++k) { - arg1 = (real) (k - 1) * arg; - sum = sum + x[(k << 1) - 3] * cos(arg1) - x[(k << 1) - 2] * - sin(arg1); - } - L108: - if (modn == 0) { - sum += (real)pow(-1, i-1) * .5f * x[n - 1]; - } - y[i - 1] = sum + sum; - } - rfftb(n, x, w); - rftb = 0.f; - for (i = 1; i <= n; ++i) { - /* Computing MAX */ - r2 = rftb, r3 = (r1 = x[i - 1] - y[i - 1], fabs(r1)); - rftb = dmax(r2,r3); - x[i - 1] = xh[i - 1]; - y[i - 1] = xh[i - 1]; - } - rfftb(n, y, w); - rfftf(n, y, w); - cf = 1.f / fn; - rftfb = 0.f; - for (i = 1; i <= n; ++i) { - /* Computing MAX */ - r2 = rftfb, r3 = (r1 = cf * y[i - 1] - x[i - 1], fabs( - r1)); - rftfb = dmax(r2,r3); - } - - /* TEST SUBROUTINES SINTI AND SINT */ - - dt = M_PI / fn; - for (i = 1; i <= nm1; ++i) { - x[i - 1] = xh[i - 1]; - } - for (i = 1; i <= nm1; ++i) { - y[i - 1] = 0.f; - arg1 = (real) i * dt; - for (k = 1; k <= nm1; ++k) { - y[i - 1] += x[k - 1] * sin((real) k * arg1); - } - y[i - 1] += y[i - 1]; - } - sinti(nm1, w); - sint(nm1, x, w); - cf = .5f / fn; - sintt = 0.f; - for (i = 1; i <= nm1; ++i) { - /* Computing MAX */ - r2 = sintt, r3 = (r1 = x[i - 1] - y[i - 1], fabs(r1)); - sintt = dmax(r2,r3); - x[i - 1] = xh[i - 1]; - y[i - 1] = x[i - 1]; - } - sintt = cf * sintt; - sint(nm1, x, w); - sint(nm1, x, w); - sintfb = 0.f; - for (i = 1; i <= nm1; ++i) { - /* Computing MAX */ - r2 = sintfb, r3 = (r1 = cf * x[i - 1] - y[i - 1], fabs( - r1)); - sintfb = dmax(r2,r3); - } - - /* TEST SUBROUTINES COSTI AND COST */ - - for (i = 1; i <= np1; ++i) { - x[i - 1] = xh[i - 1]; - } - for (i = 1; i <= np1; ++i) { - y[i - 1] = (x[0] + (real) pow(-1, i+1) * x[n]) * .5f; - arg = (real) (i - 1) * dt; - for (k = 2; k <= n; ++k) { - y[i - 1] += x[k - 1] * cos((real) (k - 1) * arg); - } - y[i - 1] += y[i - 1]; - } - costi(np1, w); - cost(np1, x, w); - costt = 0.f; - for (i = 1; i <= np1; ++i) { - /* Computing MAX */ - r2 = costt, r3 = (r1 = x[i - 1] - y[i - 1], fabs(r1)); - costt = dmax(r2,r3); - x[i - 1] = xh[i - 1]; - y[i - 1] = xh[i - 1]; - } - costt = cf * costt; - cost(np1, x, w); - cost(np1, x, w); - costfb = 0.f; - for (i = 1; i <= np1; ++i) { - /* Computing MAX */ - r2 = costfb, r3 = (r1 = cf * x[i - 1] - y[i - 1], fabs( - r1)); - costfb = dmax(r2,r3); - } - - /* TEST SUBROUTINES SINQI,SINQF AND SINQB */ - - cf = .25f / fn; - for (i = 1; i <= n; ++i) { - y[i - 1] = xh[i - 1]; - } - dt = M_PI / (fn + fn); - for (i = 1; i <= n; ++i) { - x[i - 1] = 0.f; - arg = dt * (real) i; - for (k = 1; k <= n; ++k) { - x[i - 1] += y[k - 1] * sin((real) (k + k - 1) * arg); - } - x[i - 1] *= 4.f; - } - sinqi(n, w); - sinqb(n, y, w); - sinqbt = 0.f; - for (i = 1; i <= n; ++i) { - /* Computing MAX */ - r2 = sinqbt, r3 = (r1 = y[i - 1] - x[i - 1], fabs(r1)) - ; - sinqbt = dmax(r2,r3); - x[i - 1] = xh[i - 1]; - } - sinqbt = cf * sinqbt; - for (i = 1; i <= n; ++i) { - arg = (real) (i + i - 1) * dt; - y[i - 1] = (real) pow(-1, i+1) * .5f * x[n - 1]; - for (k = 1; k <= nm1; ++k) { - y[i - 1] += x[k - 1] * sin((real) k * arg); - } - y[i - 1] += y[i - 1]; - } - sinqf(n, x, w); - sinqft = 0.f; - for (i = 1; i <= n; ++i) { - /* Computing MAX */ - r2 = sinqft, r3 = (r1 = x[i - 1] - y[i - 1], fabs(r1)) - ; - sinqft = dmax(r2,r3); - y[i - 1] = xh[i - 1]; - x[i - 1] = xh[i - 1]; - } - sinqf(n, y, w); - sinqb(n, y, w); - sinqfb = 0.f; - for (i = 1; i <= n; ++i) { - /* Computing MAX */ - r2 = sinqfb, r3 = (r1 = cf * y[i - 1] - x[i - 1], fabs( - r1)); - sinqfb = dmax(r2,r3); - } - - /* TEST SUBROUTINES COSQI,COSQF AND COSQB */ - - for (i = 1; i <= n; ++i) { - y[i - 1] = xh[i - 1]; - } - for (i = 1; i <= n; ++i) { - x[i - 1] = 0.f; - arg = (real) (i - 1) * dt; - for (k = 1; k <= n; ++k) { - x[i - 1] += y[k - 1] * cos((real) (k + k - 1) * arg); - } - x[i - 1] *= 4.f; - } - cosqi(n, w); - cosqb(n, y, w); - cosqbt = 0.f; - for (i = 1; i <= n; ++i) { - /* Computing MAX */ - r2 = cosqbt, r3 = (r1 = x[i - 1] - y[i - 1], fabs(r1)) - ; - cosqbt = dmax(r2,r3); - x[i - 1] = xh[i - 1]; - } - cosqbt = cf * cosqbt; - for (i = 1; i <= n; ++i) { - y[i - 1] = x[0] * .5f; - arg = (real) (i + i - 1) * dt; - for (k = 2; k <= n; ++k) { - y[i - 1] += x[k - 1] * cos((real) (k - 1) * arg); - } - y[i - 1] += y[i - 1]; - } - cosqf(n, x, w); - cosqft = 0.f; - for (i = 1; i <= n; ++i) { - /* Computing MAX */ - r2 = cosqft, r3 = (r1 = y[i - 1] - x[i - 1], fabs(r1)) - ; - cosqft = dmax(r2,r3); - x[i - 1] = xh[i - 1]; - y[i - 1] = xh[i - 1]; - } - cosqft = cf * cosqft; - cosqb(n, x, w); - cosqf(n, x, w); - cosqfb = 0.f; - for (i = 1; i <= n; ++i) { - /* Computing MAX */ - r2 = cosqfb, r3 = (r1 = cf * x[i - 1] - y[i - 1], fabs(r1)); - cosqfb = dmax(r2,r3); - } - - /* TEST CFFTI,CFFTF,CFFTB */ - - for (i = 1; i <= n; ++i) { - r1 = cos(sqrt2 * (real) i); - r2 = sin(sqrt2 * (real) (i * i)); - q1.r = r1, q1.i = r2; - cx[i-1].r = q1.r, cx[i-1].i = q1.i; - } - dt = (2*M_PI) / fn; - for (i = 1; i <= n; ++i) { - arg1 = -((real) (i - 1)) * dt; - cy[i-1].r = 0.f, cy[i-1].i = 0.f; - for (k = 1; k <= n; ++k) { - arg2 = (real) (k - 1) * arg1; - r1 = cos(arg2); - r2 = sin(arg2); - q3.r = r1, q3.i = r2; - q2.r = q3.r * cx[k-1].r - q3.i * cx[k-1].i, q2.i = - q3.r * cx[k-1].i + q3.i * cx[k-1].r; - q1.r = cy[i-1].r + q2.r, q1.i = cy[i-1].i + q2.i; - cy[i-1].r = q1.r, cy[i-1].i = q1.i; - } - } - cffti(n, w); - cfftf(n, (real*)cx, w); - dcfftf = 0.f; - for (i = 1; i <= n; ++i) { - /* Computing MAX */ - q1.r = cx[i-1].r - cy[i-1].r, q1.i = cx[i-1].i - cy[i-1] - .i; - r1 = dcfftf, r2 = c_abs(&q1); - dcfftf = dmax(r1,r2); - q1.r = cx[i-1].r / fn, q1.i = cx[i-1].i / fn; - cx[i-1].r = q1.r, cx[i-1].i = q1.i; - } - dcfftf /= fn; - for (i = 1; i <= n; ++i) { - arg1 = (real) (i - 1) * dt; - cy[i-1].r = 0.f, cy[i-1].i = 0.f; - for (k = 1; k <= n; ++k) { - arg2 = (real) (k - 1) * arg1; - r1 = cos(arg2); - r2 = sin(arg2); - q3.r = r1, q3.i = r2; - q2.r = q3.r * cx[k-1].r - q3.i * cx[k-1].i, q2.i = - q3.r * cx[k-1].i + q3.i * cx[k-1].r; - q1.r = cy[i-1].r + q2.r, q1.i = cy[i-1].i + q2.i; - cy[i-1].r = q1.r, cy[i-1].i = q1.i; - } - } - cfftb(n, (real*)cx, w); - dcfftb = 0.f; - for (i = 1; i <= n; ++i) { - /* Computing MAX */ - q1.r = cx[i-1].r - cy[i-1].r, q1.i = cx[i-1].i - cy[i-1].i; - r1 = dcfftb, r2 = c_abs(&q1); - dcfftb = dmax(r1,r2); - cx[i-1].r = cy[i-1].r, cx[i-1].i = cy[i-1].i; - } - cf = 1.f / fn; - cfftf(n, (real*)cx, w); - cfftb(n, (real*)cx, w); - dcfb = 0.f; - for (i = 1; i <= n; ++i) { - /* Computing MAX */ - q2.r = cf * cx[i-1].r, q2.i = cf * cx[i-1].i; - q1.r = q2.r - cy[i-1].r, q1.i = q2.i - cy[i-1].i; - r1 = dcfb, r2 = c_abs(&q1); - dcfb = dmax(r1,r2); - } - printf("%d\tRFFTF %10.3g\tRFFTB %10.ge\tRFFTFB %10.3g", n, rftf, rftb, rftfb); - printf( "\tSINT %10.3g\tSINTFB %10.ge\tCOST %10.3g\n", sintt, sintfb, costt); - printf( "\tCOSTFB %10.3g\tSINQF %10.ge\tSINQB %10.3g", costfb, sinqft, sinqbt); - printf( "\tSINQFB %10.3g\tCOSQF %10.ge\tCOSQB %10.3g\n", sinqfb, cosqft, cosqbt); - printf( "\tCOSQFB %10.3g\t", cosqfb); - printf( "\tCFFTF %10.ge\tCFFTB %10.3g\n", dcfftf, dcfftb); - printf( "\tCFFTFB %10.3g\n", dcfb); - -#define CHECK(x) if (x > 1e-3) { printf(#x " failed: %g\n", x); all_ok = 0; } - CHECK(rftf); CHECK(rftb); CHECK(rftfb); CHECK(sintt); CHECK(sintfb); CHECK(costt); - CHECK(costfb); CHECK(sinqft); CHECK(sinqbt); CHECK(sinqfb); CHECK(cosqft); CHECK(cosqbt); - CHECK(cosqfb); CHECK(dcfftf); CHECK(dcfftb); - } - - if (all_ok) printf("Everything looks fine.\n"); - else printf("ERRORS WERE DETECTED.\n"); - /* - expected: - 120 RFFTF 2.786e-06 RFFTB 6.847e-04 RFFTFB 2.795e-07 SINT 1.312e-06 SINTFB 1.237e-06 COST 1.319e-06 - COSTFB 4.355e-06 SINQF 3.281e-04 SINQB 1.876e-06 SINQFB 2.198e-07 COSQF 6.199e-07 COSQB 2.193e-06 - COSQFB 2.300e-07 DEZF 5.573e-06 DEZB 1.363e-05 DEZFB 1.371e-06 CFFTF 5.590e-06 CFFTB 4.751e-05 - CFFTFB 4.215e-07 - 54 RFFTF 4.708e-07 RFFTB 3.052e-05 RFFTFB 3.439e-07 SINT 3.532e-07 SINTFB 4.145e-07 COST 3.002e-07 - COSTFB 6.343e-07 SINQF 4.959e-05 SINQB 4.415e-07 SINQFB 2.882e-07 COSQF 2.826e-07 COSQB 2.472e-07 - COSQFB 3.439e-07 DEZF 9.388e-07 DEZB 5.066e-06 DEZFB 5.960e-07 CFFTF 1.426e-06 CFFTB 9.482e-06 - CFFTFB 2.980e-07 - 49 RFFTF 4.476e-07 RFFTB 5.341e-05 RFFTFB 2.574e-07 SINT 9.196e-07 SINTFB 9.401e-07 COST 8.174e-07 - COSTFB 1.331e-06 SINQF 4.005e-05 SINQB 9.342e-07 SINQFB 3.057e-07 COSQF 2.530e-07 COSQB 6.228e-07 - COSQFB 4.826e-07 DEZF 9.071e-07 DEZB 4.590e-06 DEZFB 5.960e-07 CFFTF 2.095e-06 CFFTB 1.414e-05 - CFFTFB 7.398e-07 - 32 RFFTF 4.619e-07 RFFTB 2.861e-05 RFFTFB 1.192e-07 SINT 3.874e-07 SINTFB 4.172e-07 COST 4.172e-07 - COSTFB 1.699e-06 SINQF 2.551e-05 SINQB 6.407e-07 SINQFB 2.980e-07 COSQF 1.639e-07 COSQB 1.714e-07 - COSQFB 2.384e-07 DEZF 1.013e-06 DEZB 2.339e-06 DEZFB 7.749e-07 CFFTF 1.127e-06 CFFTB 6.744e-06 - CFFTFB 2.666e-07 - 4 RFFTF 1.490e-08 RFFTB 1.490e-07 RFFTFB 5.960e-08 SINT 7.451e-09 SINTFB 0.000e+00 COST 2.980e-08 - COSTFB 1.192e-07 SINQF 4.768e-07 SINQB 2.980e-08 SINQFB 5.960e-08 COSQF 2.608e-08 COSQB 5.960e-08 - COSQFB 1.192e-07 DEZF 2.980e-08 DEZB 5.960e-08 DEZFB 0.000e+00 CFFTF 6.664e-08 CFFTB 5.960e-08 - CFFTFB 6.144e-08 - 3 RFFTF 3.974e-08 RFFTB 1.192e-07 RFFTFB 3.303e-08 SINT 1.987e-08 SINTFB 1.069e-08 COST 4.967e-08 - COSTFB 5.721e-08 SINQF 8.941e-08 SINQB 2.980e-08 SINQFB 1.259e-07 COSQF 7.451e-09 COSQB 4.967e-08 - COSQFB 7.029e-08 DEZF 1.192e-07 DEZB 5.960e-08 DEZFB 5.960e-08 CFFTF 7.947e-08 CFFTB 8.429e-08 - CFFTFB 9.064e-08 - 2 RFFTF 0.000e+00 RFFTB 0.000e+00 RFFTFB 0.000e+00 SINT 0.000e+00 SINTFB 0.000e+00 COST 0.000e+00 - COSTFB 0.000e+00 SINQF 1.192e-07 SINQB 2.980e-08 SINQFB 5.960e-08 COSQF 7.451e-09 COSQB 1.490e-08 - COSQFB 0.000e+00 DEZF 0.000e+00 DEZB 0.000e+00 DEZFB 0.000e+00 CFFTF 0.000e+00 CFFTB 5.960e-08 - CFFTFB 5.960e-08 - Everything looks fine. - - */ - - return all_ok ? 0 : 1; -} -#endif //TESTING_FFTPACK diff --git a/oss-internship-2020/pffft/fftpack.h b/oss-internship-2020/pffft/fftpack.h deleted file mode 100644 index 5971b9f..0000000 --- a/oss-internship-2020/pffft/fftpack.h +++ /dev/null @@ -1,799 +0,0 @@ -/* - Interface for the f2c translation of fftpack as found on http://www.netlib.org/fftpack/ - - FFTPACK license: - - http://www.cisl.ucar.edu/css/software/fftpack5/ftpk.html - - Copyright (c) 2004 the University Corporation for Atmospheric - Research ("UCAR"). All rights reserved. Developed by NCAR's - Computational and Information Systems Laboratory, UCAR, - www.cisl.ucar.edu. - - Redistribution and use of the Software in source and binary forms, - with or without modification, is permitted provided that the - following conditions are met: - - - Neither the names of NCAR's Computational and Information Systems - Laboratory, the University Corporation for Atmospheric Research, - nor the names of its sponsors or contributors may be used to - endorse or promote products derived from this Software without - specific prior written permission. - - - Redistributions of source code must retain the above copyright - notices, this list of conditions, and the disclaimer below. - - - Redistributions in binary form must reproduce the above copyright - notice, this list of conditions, and the disclaimer below in the - documentation and/or other materials provided with the - distribution. - - THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, - EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE WARRANTIES OF - MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND - NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT - HOLDERS BE LIABLE FOR ANY CLAIM, INDIRECT, INCIDENTAL, SPECIAL, - EXEMPLARY, OR CONSEQUENTIAL DAMAGES OR OTHER LIABILITY, WHETHER IN AN - ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE - SOFTWARE. - - ChangeLog: - 2011/10/02: this is my first release of this file. -*/ - -#ifndef FFTPACK_H -#define FFTPACK_H - -#ifdef __cplusplus -extern "C" { -#endif - -// just define FFTPACK_DOUBLE_PRECISION if you want to build it as a double precision fft - -#ifndef FFTPACK_DOUBLE_PRECISION - typedef float fftpack_real; - typedef int fftpack_int; -#else - typedef double fftpack_real; - typedef int fftpack_int; -#endif - - void cffti(fftpack_int n, fftpack_real *wsave); - - void cfftf(fftpack_int n, fftpack_real *c, fftpack_real *wsave); - - void cfftb(fftpack_int n, fftpack_real *c, fftpack_real *wsave); - - void rffti(fftpack_int n, fftpack_real *wsave); - void rfftf(fftpack_int n, fftpack_real *r, fftpack_real *wsave); - void rfftb(fftpack_int n, fftpack_real *r, fftpack_real *wsave); - - void cosqi(fftpack_int n, fftpack_real *wsave); - void cosqf(fftpack_int n, fftpack_real *x, fftpack_real *wsave); - void cosqb(fftpack_int n, fftpack_real *x, fftpack_real *wsave); - - void costi(fftpack_int n, fftpack_real *wsave); - void cost(fftpack_int n, fftpack_real *x, fftpack_real *wsave); - - void sinqi(fftpack_int n, fftpack_real *wsave); - void sinqb(fftpack_int n, fftpack_real *x, fftpack_real *wsave); - void sinqf(fftpack_int n, fftpack_real *x, fftpack_real *wsave); - - void sinti(fftpack_int n, fftpack_real *wsave); - void sint(fftpack_int n, fftpack_real *x, fftpack_real *wsave); - -#ifdef __cplusplus -} -#endif - -#endif /* FFTPACK_H */ - -/* - - FFTPACK - -* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * - - version 4 april 1985 - - a package of fortran subprograms for the fast fourier - transform of periodic and other symmetric sequences - - by - - paul n swarztrauber - - national center for atmospheric research boulder,colorado 80307 - - which is sponsored by the national science foundation - -* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * - - -this package consists of programs which perform fast fourier -transforms for both complex and real periodic sequences and -certain other symmetric sequences that are listed below. - -1. rffti initialize rfftf and rfftb -2. rfftf forward transform of a real periodic sequence -3. rfftb backward transform of a real coefficient array - -4. ezffti initialize ezfftf and ezfftb -5. ezfftf a simplified real periodic forward transform -6. ezfftb a simplified real periodic backward transform - -7. sinti initialize sint -8. sint sine transform of a real odd sequence - -9. costi initialize cost -10. cost cosine transform of a real even sequence - -11. sinqi initialize sinqf and sinqb -12. sinqf forward sine transform with odd wave numbers -13. sinqb unnormalized inverse of sinqf - -14. cosqi initialize cosqf and cosqb -15. cosqf forward cosine transform with odd wave numbers -16. cosqb unnormalized inverse of cosqf - -17. cffti initialize cfftf and cfftb -18. cfftf forward transform of a complex periodic sequence -19. cfftb unnormalized inverse of cfftf - - -****************************************************************** - -subroutine rffti(n,wsave) - - **************************************************************** - -subroutine rffti initializes the array wsave which is used in -both rfftf and rfftb. the prime factorization of n together with -a tabulation of the trigonometric functions are computed and -stored in wsave. - -input parameter - -n the length of the sequence to be transformed. - -output parameter - -wsave a work array which must be dimensioned at least 2*n+15. - the same work array can be used for both rfftf and rfftb - as long as n remains unchanged. different wsave arrays - are required for different values of n. the contents of - wsave must not be changed between calls of rfftf or rfftb. - -****************************************************************** - -subroutine rfftf(n,r,wsave) - -****************************************************************** - -subroutine rfftf computes the fourier coefficients of a real -perodic sequence (fourier analysis). the transform is defined -below at output parameter r. - -input parameters - -n the length of the array r to be transformed. the method - is most efficient when n is a product of small primes. - n may change so long as different work arrays are provided - -r a real array of length n which contains the sequence - to be transformed - -wsave a work array which must be dimensioned at least 2*n+15. - in the program that calls rfftf. the wsave array must be - initialized by calling subroutine rffti(n,wsave) and a - different wsave array must be used for each different - value of n. this initialization does not have to be - repeated so long as n remains unchanged thus subsequent - transforms can be obtained faster than the first. - the same wsave array can be used by rfftf and rfftb. - - -output parameters - -r r(1) = the sum from i=1 to i=n of r(i) - - if n is even set l =n/2 , if n is odd set l = (n+1)/2 - - then for k = 2,...,l - - r(2*k-2) = the sum from i = 1 to i = n of - - r(i)*cos((k-1)*(i-1)*2*pi/n) - - r(2*k-1) = the sum from i = 1 to i = n of - - -r(i)*sin((k-1)*(i-1)*2*pi/n) - - if n is even - - r(n) = the sum from i = 1 to i = n of - - (-1)**(i-1)*r(i) - - ***** note - this transform is unnormalized since a call of rfftf - followed by a call of rfftb will multiply the input - sequence by n. - -wsave contains results which must not be destroyed between - calls of rfftf or rfftb. - - -****************************************************************** - -subroutine rfftb(n,r,wsave) - -****************************************************************** - -subroutine rfftb computes the real perodic sequence from its -fourier coefficients (fourier synthesis). the transform is defined -below at output parameter r. - -input parameters - -n the length of the array r to be transformed. the method - is most efficient when n is a product of small primes. - n may change so long as different work arrays are provided - -r a real array of length n which contains the sequence - to be transformed - -wsave a work array which must be dimensioned at least 2*n+15. - in the program that calls rfftb. the wsave array must be - initialized by calling subroutine rffti(n,wsave) and a - different wsave array must be used for each different - value of n. this initialization does not have to be - repeated so long as n remains unchanged thus subsequent - transforms can be obtained faster than the first. - the same wsave array can be used by rfftf and rfftb. - - -output parameters - -r for n even and for i = 1,...,n - - r(i) = r(1)+(-1)**(i-1)*r(n) - - plus the sum from k=2 to k=n/2 of - - 2.*r(2*k-2)*cos((k-1)*(i-1)*2*pi/n) - - -2.*r(2*k-1)*sin((k-1)*(i-1)*2*pi/n) - - for n odd and for i = 1,...,n - - r(i) = r(1) plus the sum from k=2 to k=(n+1)/2 of - - 2.*r(2*k-2)*cos((k-1)*(i-1)*2*pi/n) - - -2.*r(2*k-1)*sin((k-1)*(i-1)*2*pi/n) - - ***** note - this transform is unnormalized since a call of rfftf - followed by a call of rfftb will multiply the input - sequence by n. - -wsave contains results which must not be destroyed between - calls of rfftb or rfftf. - -****************************************************************** - -subroutine sinti(n,wsave) - -****************************************************************** - -subroutine sinti initializes the array wsave which is used in -subroutine sint. the prime factorization of n together with -a tabulation of the trigonometric functions are computed and -stored in wsave. - -input parameter - -n the length of the sequence to be transformed. the method - is most efficient when n+1 is a product of small primes. - -output parameter - -wsave a work array with at least int(2.5*n+15) locations. - different wsave arrays are required for different values - of n. the contents of wsave must not be changed between - calls of sint. - -****************************************************************** - -subroutine sint(n,x,wsave) - -****************************************************************** - -subroutine sint computes the discrete fourier sine transform -of an odd sequence x(i). the transform is defined below at -output parameter x. - -sint is the unnormalized inverse of itself since a call of sint -followed by another call of sint will multiply the input sequence -x by 2*(n+1). - -the array wsave which is used by subroutine sint must be -initialized by calling subroutine sinti(n,wsave). - -input parameters - -n the length of the sequence to be transformed. the method - is most efficient when n+1 is the product of small primes. - -x an array which contains the sequence to be transformed - - -wsave a work array with dimension at least int(2.5*n+15) - in the program that calls sint. the wsave array must be - initialized by calling subroutine sinti(n,wsave) and a - different wsave array must be used for each different - value of n. this initialization does not have to be - repeated so long as n remains unchanged thus subsequent - transforms can be obtained faster than the first. - -output parameters - -x for i=1,...,n - - x(i)= the sum from k=1 to k=n - - 2*x(k)*sin(k*i*pi/(n+1)) - - a call of sint followed by another call of - sint will multiply the sequence x by 2*(n+1). - hence sint is the unnormalized inverse - of itself. - -wsave contains initialization calculations which must not be - destroyed between calls of sint. - -****************************************************************** - -subroutine costi(n,wsave) - -****************************************************************** - -subroutine costi initializes the array wsave which is used in -subroutine cost. the prime factorization of n together with -a tabulation of the trigonometric functions are computed and -stored in wsave. - -input parameter - -n the length of the sequence to be transformed. the method - is most efficient when n-1 is a product of small primes. - -output parameter - -wsave a work array which must be dimensioned at least 3*n+15. - different wsave arrays are required for different values - of n. the contents of wsave must not be changed between - calls of cost. - -****************************************************************** - -subroutine cost(n,x,wsave) - -****************************************************************** - -subroutine cost computes the discrete fourier cosine transform -of an even sequence x(i). the transform is defined below at output -parameter x. - -cost is the unnormalized inverse of itself since a call of cost -followed by another call of cost will multiply the input sequence -x by 2*(n-1). the transform is defined below at output parameter x - -the array wsave which is used by subroutine cost must be -initialized by calling subroutine costi(n,wsave). - -input parameters - -n the length of the sequence x. n must be greater than 1. - the method is most efficient when n-1 is a product of - small primes. - -x an array which contains the sequence to be transformed - -wsave a work array which must be dimensioned at least 3*n+15 - in the program that calls cost. the wsave array must be - initialized by calling subroutine costi(n,wsave) and a - different wsave array must be used for each different - value of n. this initialization does not have to be - repeated so long as n remains unchanged thus subsequent - transforms can be obtained faster than the first. - -output parameters - -x for i=1,...,n - - x(i) = x(1)+(-1)**(i-1)*x(n) - - + the sum from k=2 to k=n-1 - - 2*x(k)*cos((k-1)*(i-1)*pi/(n-1)) - - a call of cost followed by another call of - cost will multiply the sequence x by 2*(n-1) - hence cost is the unnormalized inverse - of itself. - -wsave contains initialization calculations which must not be - destroyed between calls of cost. - -****************************************************************** - -subroutine sinqi(n,wsave) - -****************************************************************** - -subroutine sinqi initializes the array wsave which is used in -both sinqf and sinqb. the prime factorization of n together with -a tabulation of the trigonometric functions are computed and -stored in wsave. - -input parameter - -n the length of the sequence to be transformed. the method - is most efficient when n is a product of small primes. - -output parameter - -wsave a work array which must be dimensioned at least 3*n+15. - the same work array can be used for both sinqf and sinqb - as long as n remains unchanged. different wsave arrays - are required for different values of n. the contents of - wsave must not be changed between calls of sinqf or sinqb. - -****************************************************************** - -subroutine sinqf(n,x,wsave) - -****************************************************************** - -subroutine sinqf computes the fast fourier transform of quarter -wave data. that is , sinqf computes the coefficients in a sine -series representation with only odd wave numbers. the transform -is defined below at output parameter x. - -sinqb is the unnormalized inverse of sinqf since a call of sinqf -followed by a call of sinqb will multiply the input sequence x -by 4*n. - -the array wsave which is used by subroutine sinqf must be -initialized by calling subroutine sinqi(n,wsave). - - -input parameters - -n the length of the array x to be transformed. the method - is most efficient when n is a product of small primes. - -x an array which contains the sequence to be transformed - -wsave a work array which must be dimensioned at least 3*n+15. - in the program that calls sinqf. the wsave array must be - initialized by calling subroutine sinqi(n,wsave) and a - different wsave array must be used for each different - value of n. this initialization does not have to be - repeated so long as n remains unchanged thus subsequent - transforms can be obtained faster than the first. - -output parameters - -x for i=1,...,n - - x(i) = (-1)**(i-1)*x(n) - - + the sum from k=1 to k=n-1 of - - 2*x(k)*sin((2*i-1)*k*pi/(2*n)) - - a call of sinqf followed by a call of - sinqb will multiply the sequence x by 4*n. - therefore sinqb is the unnormalized inverse - of sinqf. - -wsave contains initialization calculations which must not - be destroyed between calls of sinqf or sinqb. - -****************************************************************** - -subroutine sinqb(n,x,wsave) - -****************************************************************** - -subroutine sinqb computes the fast fourier transform of quarter -wave data. that is , sinqb computes a sequence from its -representation in terms of a sine series with odd wave numbers. -the transform is defined below at output parameter x. - -sinqf is the unnormalized inverse of sinqb since a call of sinqb -followed by a call of sinqf will multiply the input sequence x -by 4*n. - -the array wsave which is used by subroutine sinqb must be -initialized by calling subroutine sinqi(n,wsave). - - -input parameters - -n the length of the array x to be transformed. the method - is most efficient when n is a product of small primes. - -x an array which contains the sequence to be transformed - -wsave a work array which must be dimensioned at least 3*n+15. - in the program that calls sinqb. the wsave array must be - initialized by calling subroutine sinqi(n,wsave) and a - different wsave array must be used for each different - value of n. this initialization does not have to be - repeated so long as n remains unchanged thus subsequent - transforms can be obtained faster than the first. - -output parameters - -x for i=1,...,n - - x(i)= the sum from k=1 to k=n of - - 4*x(k)*sin((2k-1)*i*pi/(2*n)) - - a call of sinqb followed by a call of - sinqf will multiply the sequence x by 4*n. - therefore sinqf is the unnormalized inverse - of sinqb. - -wsave contains initialization calculations which must not - be destroyed between calls of sinqb or sinqf. - -****************************************************************** - -subroutine cosqi(n,wsave) - -****************************************************************** - -subroutine cosqi initializes the array wsave which is used in -both cosqf and cosqb. the prime factorization of n together with -a tabulation of the trigonometric functions are computed and -stored in wsave. - -input parameter - -n the length of the array to be transformed. the method - is most efficient when n is a product of small primes. - -output parameter - -wsave a work array which must be dimensioned at least 3*n+15. - the same work array can be used for both cosqf and cosqb - as long as n remains unchanged. different wsave arrays - are required for different values of n. the contents of - wsave must not be changed between calls of cosqf or cosqb. - -****************************************************************** - -subroutine cosqf(n,x,wsave) - -****************************************************************** - -subroutine cosqf computes the fast fourier transform of quarter -wave data. that is , cosqf computes the coefficients in a cosine -series representation with only odd wave numbers. the transform -is defined below at output parameter x - -cosqf is the unnormalized inverse of cosqb since a call of cosqf -followed by a call of cosqb will multiply the input sequence x -by 4*n. - -the array wsave which is used by subroutine cosqf must be -initialized by calling subroutine cosqi(n,wsave). - - -input parameters - -n the length of the array x to be transformed. the method - is most efficient when n is a product of small primes. - -x an array which contains the sequence to be transformed - -wsave a work array which must be dimensioned at least 3*n+15 - in the program that calls cosqf. the wsave array must be - initialized by calling subroutine cosqi(n,wsave) and a - different wsave array must be used for each different - value of n. this initialization does not have to be - repeated so long as n remains unchanged thus subsequent - transforms can be obtained faster than the first. - -output parameters - -x for i=1,...,n - - x(i) = x(1) plus the sum from k=2 to k=n of - - 2*x(k)*cos((2*i-1)*(k-1)*pi/(2*n)) - - a call of cosqf followed by a call of - cosqb will multiply the sequence x by 4*n. - therefore cosqb is the unnormalized inverse - of cosqf. - -wsave contains initialization calculations which must not - be destroyed between calls of cosqf or cosqb. - -****************************************************************** - -subroutine cosqb(n,x,wsave) - -****************************************************************** - -subroutine cosqb computes the fast fourier transform of quarter -wave data. that is , cosqb computes a sequence from its -representation in terms of a cosine series with odd wave numbers. -the transform is defined below at output parameter x. - -cosqb is the unnormalized inverse of cosqf since a call of cosqb -followed by a call of cosqf will multiply the input sequence x -by 4*n. - -the array wsave which is used by subroutine cosqb must be -initialized by calling subroutine cosqi(n,wsave). - - -input parameters - -n the length of the array x to be transformed. the method - is most efficient when n is a product of small primes. - -x an array which contains the sequence to be transformed - -wsave a work array that must be dimensioned at least 3*n+15 - in the program that calls cosqb. the wsave array must be - initialized by calling subroutine cosqi(n,wsave) and a - different wsave array must be used for each different - value of n. this initialization does not have to be - repeated so long as n remains unchanged thus subsequent - transforms can be obtained faster than the first. - -output parameters - -x for i=1,...,n - - x(i)= the sum from k=1 to k=n of - - 4*x(k)*cos((2*k-1)*(i-1)*pi/(2*n)) - - a call of cosqb followed by a call of - cosqf will multiply the sequence x by 4*n. - therefore cosqf is the unnormalized inverse - of cosqb. - -wsave contains initialization calculations which must not - be destroyed between calls of cosqb or cosqf. - -****************************************************************** - -subroutine cffti(n,wsave) - -****************************************************************** - -subroutine cffti initializes the array wsave which is used in -both cfftf and cfftb. the prime factorization of n together with -a tabulation of the trigonometric functions are computed and -stored in wsave. - -input parameter - -n the length of the sequence to be transformed - -output parameter - -wsave a work array which must be dimensioned at least 4*n+15 - the same work array can be used for both cfftf and cfftb - as long as n remains unchanged. different wsave arrays - are required for different values of n. the contents of - wsave must not be changed between calls of cfftf or cfftb. - -****************************************************************** - -subroutine cfftf(n,c,wsave) - -****************************************************************** - -subroutine cfftf computes the forward complex discrete fourier -transform (the fourier analysis). equivalently , cfftf computes -the fourier coefficients of a complex periodic sequence. -the transform is defined below at output parameter c. - -the transform is not normalized. to obtain a normalized transform -the output must be divided by n. otherwise a call of cfftf -followed by a call of cfftb will multiply the sequence by n. - -the array wsave which is used by subroutine cfftf must be -initialized by calling subroutine cffti(n,wsave). - -input parameters - - -n the length of the complex sequence c. the method is - more efficient when n is the product of small primes. n - -c a complex array of length n which contains the sequence - -wsave a real work array which must be dimensioned at least 4n+15 - in the program that calls cfftf. the wsave array must be - initialized by calling subroutine cffti(n,wsave) and a - different wsave array must be used for each different - value of n. this initialization does not have to be - repeated so long as n remains unchanged thus subsequent - transforms can be obtained faster than the first. - the same wsave array can be used by cfftf and cfftb. - -output parameters - -c for j=1,...,n - - c(j)=the sum from k=1,...,n of - - c(k)*exp(-i*(j-1)*(k-1)*2*pi/n) - - where i=sqrt(-1) - -wsave contains initialization calculations which must not be - destroyed between calls of subroutine cfftf or cfftb - -****************************************************************** - -subroutine cfftb(n,c,wsave) - -****************************************************************** - -subroutine cfftb computes the backward complex discrete fourier -transform (the fourier synthesis). equivalently , cfftb computes -a complex periodic sequence from its fourier coefficients. -the transform is defined below at output parameter c. - -a call of cfftf followed by a call of cfftb will multiply the -sequence by n. - -the array wsave which is used by subroutine cfftb must be -initialized by calling subroutine cffti(n,wsave). - -input parameters - - -n the length of the complex sequence c. the method is - more efficient when n is the product of small primes. - -c a complex array of length n which contains the sequence - -wsave a real work array which must be dimensioned at least 4n+15 - in the program that calls cfftb. the wsave array must be - initialized by calling subroutine cffti(n,wsave) and a - different wsave array must be used for each different - value of n. this initialization does not have to be - repeated so long as n remains unchanged thus subsequent - transforms can be obtained faster than the first. - the same wsave array can be used by cfftf and cfftb. - -output parameters - -c for j=1,...,n - - c(j)=the sum from k=1,...,n of - - c(k)*exp(i*(j-1)*(k-1)*2*pi/n) - - where i=sqrt(-1) - -wsave contains initialization calculations which must not be - destroyed between calls of subroutine cfftf or cfftb - -*/ diff --git a/oss-internship-2020/pffft/main_pffft_sandboxed.cc b/oss-internship-2020/pffft/main_pffft_sandboxed.cc index 8b7e6d1..10ea802 100644 --- a/oss-internship-2020/pffft/main_pffft_sandboxed.cc +++ b/oss-internship-2020/pffft/main_pffft_sandboxed.cc @@ -23,7 +23,6 @@ #include #include -#include "fftpack.h" #include "pffft_sapi.sapi.h" #include "sandboxed_api/util/flag.h" #include "sandboxed_api/vars.h" diff --git a/oss-internship-2020/pffft/pffft.c b/oss-internship-2020/pffft/pffft.c deleted file mode 100644 index 1686e15..0000000 --- a/oss-internship-2020/pffft/pffft.c +++ /dev/null @@ -1,1881 +0,0 @@ -/* Copyright (c) 2013 Julien Pommier ( pommier@modartt.com ) - - Based on original fortran 77 code from FFTPACKv4 from NETLIB - (http://www.netlib.org/fftpack), authored by Dr Paul Swarztrauber - of NCAR, in 1985. - - As confirmed by the NCAR fftpack software curators, the following - FFTPACKv5 license applies to FFTPACKv4 sources. My changes are - released under the same terms. - - FFTPACK license: - - http://www.cisl.ucar.edu/css/software/fftpack5/ftpk.html - - Copyright (c) 2004 the University Corporation for Atmospheric - Research ("UCAR"). All rights reserved. Developed by NCAR's - Computational and Information Systems Laboratory, UCAR, - www.cisl.ucar.edu. - - Redistribution and use of the Software in source and binary forms, - with or without modification, is permitted provided that the - following conditions are met: - - - Neither the names of NCAR's Computational and Information Systems - Laboratory, the University Corporation for Atmospheric Research, - nor the names of its sponsors or contributors may be used to - endorse or promote products derived from this Software without - specific prior written permission. - - - Redistributions of source code must retain the above copyright - notices, this list of conditions, and the disclaimer below. - - - Redistributions in binary form must reproduce the above copyright - notice, this list of conditions, and the disclaimer below in the - documentation and/or other materials provided with the - distribution. - - THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, - EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE WARRANTIES OF - MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND - NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT - HOLDERS BE LIABLE FOR ANY CLAIM, INDIRECT, INCIDENTAL, SPECIAL, - EXEMPLARY, OR CONSEQUENTIAL DAMAGES OR OTHER LIABILITY, WHETHER IN AN - ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE - SOFTWARE. - - - PFFFT : a Pretty Fast FFT. - - This file is largerly based on the original FFTPACK implementation, modified in - order to take advantage of SIMD instructions of modern CPUs. -*/ - -/* - ChangeLog: - - 2011/10/02, version 1: This is the very first release of this file. -*/ - -#include "pffft.h" -#include -#include -#include -#include - -/* detect compiler flavour */ -#if defined(_MSC_VER) -# define COMPILER_MSVC -#elif defined(__GNUC__) -# define COMPILER_GCC -#endif - -#if defined(COMPILER_GCC) -# define ALWAYS_INLINE(return_type) inline return_type __attribute__ ((always_inline)) -# define NEVER_INLINE(return_type) return_type __attribute__ ((noinline)) -# define RESTRICT __restrict -# define VLA_ARRAY_ON_STACK(type__, varname__, size__) type__ varname__[size__]; -#elif defined(COMPILER_MSVC) -# define ALWAYS_INLINE(return_type) __forceinline return_type -# define NEVER_INLINE(return_type) __declspec(noinline) return_type -# define RESTRICT __restrict -# define VLA_ARRAY_ON_STACK(type__, varname__, size__) type__ *varname__ = (type__*)_alloca(size__ * sizeof(type__)) -#endif - - -/* - vector support macros: the rest of the code is independant of - SSE/Altivec/NEON -- adding support for other platforms with 4-element - vectors should be limited to these macros -*/ - - -// define PFFFT_SIMD_DISABLE if you want to use scalar code instead of simd code -//#define PFFFT_SIMD_DISABLE - -/* - Altivec support macros -*/ -#if !defined(PFFFT_SIMD_DISABLE) && (defined(__ppc__) || defined(__ppc64__)) -typedef vector float v4sf; -# define SIMD_SZ 4 -# define VZERO() ((vector float) vec_splat_u8(0)) -# define VMUL(a,b) vec_madd(a,b, VZERO()) -# define VADD(a,b) vec_add(a,b) -# define VMADD(a,b,c) vec_madd(a,b,c) -# define VSUB(a,b) vec_sub(a,b) -inline v4sf ld_ps1(const float *p) { v4sf v=vec_lde(0,p); return vec_splat(vec_perm(v, v, vec_lvsl(0, p)), 0); } -# define LD_PS1(p) ld_ps1(&p) -# define INTERLEAVE2(in1, in2, out1, out2) { v4sf tmp__ = vec_mergeh(in1, in2); out2 = vec_mergel(in1, in2); out1 = tmp__; } -# define UNINTERLEAVE2(in1, in2, out1, out2) { \ - vector unsigned char vperm1 = (vector unsigned char)(0,1,2,3,8,9,10,11,16,17,18,19,24,25,26,27); \ - vector unsigned char vperm2 = (vector unsigned char)(4,5,6,7,12,13,14,15,20,21,22,23,28,29,30,31); \ - v4sf tmp__ = vec_perm(in1, in2, vperm1); out2 = vec_perm(in1, in2, vperm2); out1 = tmp__; \ - } -# define VTRANSPOSE4(x0,x1,x2,x3) { \ - v4sf y0 = vec_mergeh(x0, x2); \ - v4sf y1 = vec_mergel(x0, x2); \ - v4sf y2 = vec_mergeh(x1, x3); \ - v4sf y3 = vec_mergel(x1, x3); \ - x0 = vec_mergeh(y0, y2); \ - x1 = vec_mergel(y0, y2); \ - x2 = vec_mergeh(y1, y3); \ - x3 = vec_mergel(y1, y3); \ - } -# define VSWAPHL(a,b) vec_perm(a,b, (vector unsigned char)(16,17,18,19,20,21,22,23,8,9,10,11,12,13,14,15)) -# define VALIGNED(ptr) ((((long)(ptr)) & 0xF) == 0) - -/* - SSE1 support macros -*/ -#elif !defined(PFFFT_SIMD_DISABLE) && (defined(__x86_64__) || defined(_M_X64) || defined(i386) || defined(_M_IX86)) - -#include -typedef __m128 v4sf; -# define SIMD_SZ 4 // 4 floats by simd vector -- this is pretty much hardcoded in the preprocess/finalize functions anyway so you will have to work if you want to enable AVX with its 256-bit vectors. -# define VZERO() _mm_setzero_ps() -# define VMUL(a,b) _mm_mul_ps(a,b) -# define VADD(a,b) _mm_add_ps(a,b) -# define VMADD(a,b,c) _mm_add_ps(_mm_mul_ps(a,b), c) -# define VSUB(a,b) _mm_sub_ps(a,b) -# define LD_PS1(p) _mm_set1_ps(p) -# define INTERLEAVE2(in1, in2, out1, out2) { v4sf tmp__ = _mm_unpacklo_ps(in1, in2); out2 = _mm_unpackhi_ps(in1, in2); out1 = tmp__; } -# define UNINTERLEAVE2(in1, in2, out1, out2) { v4sf tmp__ = _mm_shuffle_ps(in1, in2, _MM_SHUFFLE(2,0,2,0)); out2 = _mm_shuffle_ps(in1, in2, _MM_SHUFFLE(3,1,3,1)); out1 = tmp__; } -# define VTRANSPOSE4(x0,x1,x2,x3) _MM_TRANSPOSE4_PS(x0,x1,x2,x3) -# define VSWAPHL(a,b) _mm_shuffle_ps(b, a, _MM_SHUFFLE(3,2,1,0)) -# define VALIGNED(ptr) ((((long)(ptr)) & 0xF) == 0) - -/* - ARM NEON support macros -*/ -#elif !defined(PFFFT_SIMD_DISABLE) && (defined(__arm__) || defined(__aarch64__) || defined(__arm64__)) -# include -typedef float32x4_t v4sf; -# define SIMD_SZ 4 -# define VZERO() vdupq_n_f32(0) -# define VMUL(a,b) vmulq_f32(a,b) -# define VADD(a,b) vaddq_f32(a,b) -# define VMADD(a,b,c) vmlaq_f32(c,a,b) -# define VSUB(a,b) vsubq_f32(a,b) -# define LD_PS1(p) vld1q_dup_f32(&(p)) -# define INTERLEAVE2(in1, in2, out1, out2) { float32x4x2_t tmp__ = vzipq_f32(in1,in2); out1=tmp__.val[0]; out2=tmp__.val[1]; } -# define UNINTERLEAVE2(in1, in2, out1, out2) { float32x4x2_t tmp__ = vuzpq_f32(in1,in2); out1=tmp__.val[0]; out2=tmp__.val[1]; } -# define VTRANSPOSE4(x0,x1,x2,x3) { \ - float32x4x2_t t0_ = vzipq_f32(x0, x2); \ - float32x4x2_t t1_ = vzipq_f32(x1, x3); \ - float32x4x2_t u0_ = vzipq_f32(t0_.val[0], t1_.val[0]); \ - float32x4x2_t u1_ = vzipq_f32(t0_.val[1], t1_.val[1]); \ - x0 = u0_.val[0]; x1 = u0_.val[1]; x2 = u1_.val[0]; x3 = u1_.val[1]; \ - } -// marginally faster version -//# define VTRANSPOSE4(x0,x1,x2,x3) { asm("vtrn.32 %q0, %q1;\n vtrn.32 %q2,%q3\n vswp %f0,%e2\n vswp %f1,%e3" : "+w"(x0), "+w"(x1), "+w"(x2), "+w"(x3)::); } -# define VSWAPHL(a,b) vcombine_f32(vget_low_f32(b), vget_high_f32(a)) -# define VALIGNED(ptr) ((((long)(ptr)) & 0x3) == 0) -#else -# if !defined(PFFFT_SIMD_DISABLE) -# warning "building with simd disabled !\n"; -# define PFFFT_SIMD_DISABLE // fallback to scalar code -# endif -#endif - -// fallback mode for situations where SSE/Altivec are not available, use scalar mode instead -#ifdef PFFFT_SIMD_DISABLE -typedef float v4sf; -# define SIMD_SZ 1 -# define VZERO() 0.f -# define VMUL(a,b) ((a)*(b)) -# define VADD(a,b) ((a)+(b)) -# define VMADD(a,b,c) ((a)*(b)+(c)) -# define VSUB(a,b) ((a)-(b)) -# define LD_PS1(p) (p) -# define VALIGNED(ptr) ((((long)(ptr)) & 0x3) == 0) -#endif - -// shortcuts for complex multiplcations -#define VCPLXMUL(ar,ai,br,bi) { v4sf tmp; tmp=VMUL(ar,bi); ar=VMUL(ar,br); ar=VSUB(ar,VMUL(ai,bi)); ai=VMUL(ai,br); ai=VADD(ai,tmp); } -#define VCPLXMULCONJ(ar,ai,br,bi) { v4sf tmp; tmp=VMUL(ar,bi); ar=VMUL(ar,br); ar=VADD(ar,VMUL(ai,bi)); ai=VMUL(ai,br); ai=VSUB(ai,tmp); } -#ifndef SVMUL -// multiply a scalar with a vector -#define SVMUL(f,v) VMUL(LD_PS1(f),v) -#endif - -#if !defined(PFFFT_SIMD_DISABLE) -typedef union v4sf_union { - v4sf v; - float f[4]; -} v4sf_union; - -#include - -#define assertv4(v,f0,f1,f2,f3) assert(v.f[0] == (f0) && v.f[1] == (f1) && v.f[2] == (f2) && v.f[3] == (f3)) - -/* detect bugs with the vector support macros */ -void validate_pffft_simd() { - float f[16] = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 }; - v4sf_union a0, a1, a2, a3, t, u; - memcpy(a0.f, f, 4*sizeof(float)); - memcpy(a1.f, f+4, 4*sizeof(float)); - memcpy(a2.f, f+8, 4*sizeof(float)); - memcpy(a3.f, f+12, 4*sizeof(float)); - - t = a0; u = a1; t.v = VZERO(); - printf("VZERO=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 0, 0, 0, 0); - t.v = VADD(a1.v, a2.v); - printf("VADD(4:7,8:11)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 12, 14, 16, 18); - t.v = VMUL(a1.v, a2.v); - printf("VMUL(4:7,8:11)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 32, 45, 60, 77); - t.v = VMADD(a1.v, a2.v,a0.v); - printf("VMADD(4:7,8:11,0:3)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 32, 46, 62, 80); - - INTERLEAVE2(a1.v,a2.v,t.v,u.v); - printf("INTERLEAVE2(4:7,8:11)=[%2g %2g %2g %2g] [%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3], u.f[0], u.f[1], u.f[2], u.f[3]); - assertv4(t, 4, 8, 5, 9); assertv4(u, 6, 10, 7, 11); - UNINTERLEAVE2(a1.v,a2.v,t.v,u.v); - printf("UNINTERLEAVE2(4:7,8:11)=[%2g %2g %2g %2g] [%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3], u.f[0], u.f[1], u.f[2], u.f[3]); - assertv4(t, 4, 6, 8, 10); assertv4(u, 5, 7, 9, 11); - - t.v=LD_PS1(f[15]); - printf("LD_PS1(15)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); - assertv4(t, 15, 15, 15, 15); - t.v = VSWAPHL(a1.v, a2.v); - printf("VSWAPHL(4:7,8:11)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); - assertv4(t, 8, 9, 6, 7); - VTRANSPOSE4(a0.v, a1.v, a2.v, a3.v); - printf("VTRANSPOSE4(0:3,4:7,8:11,12:15)=[%2g %2g %2g %2g] [%2g %2g %2g %2g] [%2g %2g %2g %2g] [%2g %2g %2g %2g]\n", - a0.f[0], a0.f[1], a0.f[2], a0.f[3], a1.f[0], a1.f[1], a1.f[2], a1.f[3], - a2.f[0], a2.f[1], a2.f[2], a2.f[3], a3.f[0], a3.f[1], a3.f[2], a3.f[3]); - assertv4(a0, 0, 4, 8, 12); assertv4(a1, 1, 5, 9, 13); assertv4(a2, 2, 6, 10, 14); assertv4(a3, 3, 7, 11, 15); -} -#endif //!PFFFT_SIMD_DISABLE - -/* SSE and co like 16-bytes aligned pointers */ -#define MALLOC_V4SF_ALIGNMENT 64 // with a 64-byte alignment, we are even aligned on L2 cache lines... -void *pffft_aligned_malloc(size_t nb_bytes) { - void *p, *p0 = malloc(nb_bytes + MALLOC_V4SF_ALIGNMENT); - if (!p0) return (void *) 0; - p = (void *) (((size_t) p0 + MALLOC_V4SF_ALIGNMENT) & (~((size_t) (MALLOC_V4SF_ALIGNMENT-1)))); - *((void **) p - 1) = p0; - return p; -} - -void pffft_aligned_free(void *p) { - if (p) free(*((void **) p - 1)); -} - -int pffft_simd_size() { return SIMD_SZ; } - -/* - passf2 and passb2 has been merged here, fsign = -1 for passf2, +1 for passb2 -*/ -static NEVER_INLINE(void) passf2_ps(int ido, int l1, const v4sf *cc, v4sf *ch, const float *wa1, float fsign) { - int k, i; - int l1ido = l1*ido; - if (ido <= 2) { - for (k=0; k < l1ido; k += ido, ch += ido, cc+= 2*ido) { - ch[0] = VADD(cc[0], cc[ido+0]); - ch[l1ido] = VSUB(cc[0], cc[ido+0]); - ch[1] = VADD(cc[1], cc[ido+1]); - ch[l1ido + 1] = VSUB(cc[1], cc[ido+1]); - } - } else { - for (k=0; k < l1ido; k += ido, ch += ido, cc += 2*ido) { - for (i=0; i 2); - for (k=0; k< l1ido; k += ido, cc+= 3*ido, ch +=ido) { - for (i=0; i 2); - for (k = 0; k < l1; ++k, cc += 5*ido, ch += ido) { - for (i = 0; i < ido-1; i += 2) { - ti5 = VSUB(cc_ref(i , 2), cc_ref(i , 5)); - ti2 = VADD(cc_ref(i , 2), cc_ref(i , 5)); - ti4 = VSUB(cc_ref(i , 3), cc_ref(i , 4)); - ti3 = VADD(cc_ref(i , 3), cc_ref(i , 4)); - tr5 = VSUB(cc_ref(i-1, 2), cc_ref(i-1, 5)); - tr2 = VADD(cc_ref(i-1, 2), cc_ref(i-1, 5)); - tr4 = VSUB(cc_ref(i-1, 3), cc_ref(i-1, 4)); - tr3 = VADD(cc_ref(i-1, 3), cc_ref(i-1, 4)); - ch_ref(i-1, 1) = VADD(cc_ref(i-1, 1), VADD(tr2, tr3)); - ch_ref(i , 1) = VADD(cc_ref(i , 1), VADD(ti2, ti3)); - cr2 = VADD(cc_ref(i-1, 1), VADD(SVMUL(tr11, tr2),SVMUL(tr12, tr3))); - ci2 = VADD(cc_ref(i , 1), VADD(SVMUL(tr11, ti2),SVMUL(tr12, ti3))); - cr3 = VADD(cc_ref(i-1, 1), VADD(SVMUL(tr12, tr2),SVMUL(tr11, tr3))); - ci3 = VADD(cc_ref(i , 1), VADD(SVMUL(tr12, ti2),SVMUL(tr11, ti3))); - cr5 = VADD(SVMUL(ti11, tr5), SVMUL(ti12, tr4)); - ci5 = VADD(SVMUL(ti11, ti5), SVMUL(ti12, ti4)); - cr4 = VSUB(SVMUL(ti12, tr5), SVMUL(ti11, tr4)); - ci4 = VSUB(SVMUL(ti12, ti5), SVMUL(ti11, ti4)); - dr3 = VSUB(cr3, ci4); - dr4 = VADD(cr3, ci4); - di3 = VADD(ci3, cr4); - di4 = VSUB(ci3, cr4); - dr5 = VADD(cr2, ci5); - dr2 = VSUB(cr2, ci5); - di5 = VSUB(ci2, cr5); - di2 = VADD(ci2, cr5); - wr1=wa1[i], wi1=fsign*wa1[i+1], wr2=wa2[i], wi2=fsign*wa2[i+1]; - wr3=wa3[i], wi3=fsign*wa3[i+1], wr4=wa4[i], wi4=fsign*wa4[i+1]; - VCPLXMUL(dr2, di2, LD_PS1(wr1), LD_PS1(wi1)); - ch_ref(i - 1, 2) = dr2; - ch_ref(i, 2) = di2; - VCPLXMUL(dr3, di3, LD_PS1(wr2), LD_PS1(wi2)); - ch_ref(i - 1, 3) = dr3; - ch_ref(i, 3) = di3; - VCPLXMUL(dr4, di4, LD_PS1(wr3), LD_PS1(wi3)); - ch_ref(i - 1, 4) = dr4; - ch_ref(i, 4) = di4; - VCPLXMUL(dr5, di5, LD_PS1(wr4), LD_PS1(wi4)); - ch_ref(i - 1, 5) = dr5; - ch_ref(i, 5) = di5; - } - } -#undef ch_ref -#undef cc_ref -} - -static NEVER_INLINE(void) radf2_ps(int ido, int l1, const v4sf * RESTRICT cc, v4sf * RESTRICT ch, const float *wa1) { - static const float minus_one = -1.f; - int i, k, l1ido = l1*ido; - for (k=0; k < l1ido; k += ido) { - v4sf a = cc[k], b = cc[k + l1ido]; - ch[2*k] = VADD(a, b); - ch[2*(k+ido)-1] = VSUB(a, b); - } - if (ido < 2) return; - if (ido != 2) { - for (k=0; k < l1ido; k += ido) { - for (i=2; i 5) { - wa[i1-1] = wa[i-1]; - wa[i1] = wa[i]; - } - } - l1 = l2; - } -} /* cffti1 */ - - -v4sf *cfftf1_ps(int n, const v4sf *input_readonly, v4sf *work1, v4sf *work2, const float *wa, const int *ifac, int isign) { - v4sf *in = (v4sf*)input_readonly; - v4sf *out = (in == work2 ? work1 : work2); - int nf = ifac[1], k1; - int l1 = 1; - int iw = 0; - assert(in != out && work1 != work2); - for (k1=2; k1<=nf+1; k1++) { - int ip = ifac[k1]; - int l2 = ip*l1; - int ido = n / l2; - int idot = ido + ido; - switch (ip) { - case 5: { - int ix2 = iw + idot; - int ix3 = ix2 + idot; - int ix4 = ix3 + idot; - passf5_ps(idot, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign); - } break; - case 4: { - int ix2 = iw + idot; - int ix3 = ix2 + idot; - passf4_ps(idot, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3], isign); - } break; - case 2: { - passf2_ps(idot, l1, in, out, &wa[iw], isign); - } break; - case 3: { - int ix2 = iw + idot; - passf3_ps(idot, l1, in, out, &wa[iw], &wa[ix2], isign); - } break; - default: - assert(0); - } - l1 = l2; - iw += (ip - 1)*idot; - if (out == work2) { - out = work1; in = work2; - } else { - out = work2; in = work1; - } - } - - return in; /* this is in fact the output .. */ -} - - -struct PFFFT_Setup { - int N; - int Ncvec; // nb of complex simd vectors (N/4 if PFFFT_COMPLEX, N/8 if PFFFT_REAL) - int ifac[15]; - pffft_transform_t transform; - v4sf *data; // allocated room for twiddle coefs - float *e; // points into 'data' , N/4*3 elements - float *twiddle; // points into 'data', N/4 elements -}; - -PFFFT_Setup *pffft_new_setup(int N, pffft_transform_t transform) { - PFFFT_Setup *s = (PFFFT_Setup*)malloc(sizeof(PFFFT_Setup)); - int k, m; - /* unfortunately, the fft size must be a multiple of 16 for complex FFTs - and 32 for real FFTs -- a lot of stuff would need to be rewritten to - handle other cases (or maybe just switch to a scalar fft, I don't know..) */ - if (transform == PFFFT_REAL) { assert((N%(2*SIMD_SZ*SIMD_SZ))==0 && N>0); } - if (transform == PFFFT_COMPLEX) { assert((N%(SIMD_SZ*SIMD_SZ))==0 && N>0); } - //assert((N % 32) == 0); - s->N = N; - s->transform = transform; - /* nb of complex simd vectors */ - s->Ncvec = (transform == PFFFT_REAL ? N/2 : N)/SIMD_SZ; - s->data = (v4sf*)pffft_aligned_malloc(2*s->Ncvec * sizeof(v4sf)); - s->e = (float*)s->data; - s->twiddle = (float*)(s->data + (2*s->Ncvec*(SIMD_SZ-1))/SIMD_SZ); - - if (transform == PFFFT_REAL) { - for (k=0; k < s->Ncvec; ++k) { - int i = k/SIMD_SZ; - int j = k%SIMD_SZ; - for (m=0; m < SIMD_SZ-1; ++m) { - float A = -2*M_PI*(m+1)*k / N; - s->e[(2*(i*3 + m) + 0) * SIMD_SZ + j] = cos(A); - s->e[(2*(i*3 + m) + 1) * SIMD_SZ + j] = sin(A); - } - } - rffti1_ps(N/SIMD_SZ, s->twiddle, s->ifac); - } else { - for (k=0; k < s->Ncvec; ++k) { - int i = k/SIMD_SZ; - int j = k%SIMD_SZ; - for (m=0; m < SIMD_SZ-1; ++m) { - float A = -2*M_PI*(m+1)*k / N; - s->e[(2*(i*3 + m) + 0)*SIMD_SZ + j] = cos(A); - s->e[(2*(i*3 + m) + 1)*SIMD_SZ + j] = sin(A); - } - } - cffti1_ps(N/SIMD_SZ, s->twiddle, s->ifac); - } - - /* check that N is decomposable with allowed prime factors */ - for (k=0, m=1; k < s->ifac[1]; ++k) { m *= s->ifac[2+k]; } - if (m != N/SIMD_SZ) { - pffft_destroy_setup(s); s = 0; - } - - return s; -} - - -void pffft_destroy_setup(PFFFT_Setup *s) { - pffft_aligned_free(s->data); - free(s); -} - -#if !defined(PFFFT_SIMD_DISABLE) - -/* [0 0 1 2 3 4 5 6 7 8] -> [0 8 7 6 5 4 3 2 1] */ -static void reversed_copy(int N, const v4sf *in, int in_stride, v4sf *out) { - v4sf g0, g1; - int k; - INTERLEAVE2(in[0], in[1], g0, g1); in += in_stride; - - *--out = VSWAPHL(g0, g1); // [g0l, g0h], [g1l g1h] -> [g1l, g0h] - for (k=1; k < N; ++k) { - v4sf h0, h1; - INTERLEAVE2(in[0], in[1], h0, h1); in += in_stride; - *--out = VSWAPHL(g1, h0); - *--out = VSWAPHL(h0, h1); - g1 = h1; - } - *--out = VSWAPHL(g1, g0); -} - -static void unreversed_copy(int N, const v4sf *in, v4sf *out, int out_stride) { - v4sf g0, g1, h0, h1; - int k; - g0 = g1 = in[0]; ++in; - for (k=1; k < N; ++k) { - h0 = *in++; h1 = *in++; - g1 = VSWAPHL(g1, h0); - h0 = VSWAPHL(h0, h1); - UNINTERLEAVE2(h0, g1, out[0], out[1]); out += out_stride; - g1 = h1; - } - h0 = *in++; h1 = g0; - g1 = VSWAPHL(g1, h0); - h0 = VSWAPHL(h0, h1); - UNINTERLEAVE2(h0, g1, out[0], out[1]); -} - -void pffft_zreorder(PFFFT_Setup *setup, const float *in, float *out, pffft_direction_t direction) { - int k, N = setup->N, Ncvec = setup->Ncvec; - const v4sf *vin = (const v4sf*)in; - v4sf *vout = (v4sf*)out; - assert(in != out); - if (setup->transform == PFFFT_REAL) { - int k, dk = N/32; - if (direction == PFFFT_FORWARD) { - for (k=0; k < dk; ++k) { - INTERLEAVE2(vin[k*8 + 0], vin[k*8 + 1], vout[2*(0*dk + k) + 0], vout[2*(0*dk + k) + 1]); - INTERLEAVE2(vin[k*8 + 4], vin[k*8 + 5], vout[2*(2*dk + k) + 0], vout[2*(2*dk + k) + 1]); - } - reversed_copy(dk, vin+2, 8, (v4sf*)(out + N/2)); - reversed_copy(dk, vin+6, 8, (v4sf*)(out + N)); - } else { - for (k=0; k < dk; ++k) { - UNINTERLEAVE2(vin[2*(0*dk + k) + 0], vin[2*(0*dk + k) + 1], vout[k*8 + 0], vout[k*8 + 1]); - UNINTERLEAVE2(vin[2*(2*dk + k) + 0], vin[2*(2*dk + k) + 1], vout[k*8 + 4], vout[k*8 + 5]); - } - unreversed_copy(dk, (v4sf*)(in + N/4), (v4sf*)(out + N - 6*SIMD_SZ), -8); - unreversed_copy(dk, (v4sf*)(in + 3*N/4), (v4sf*)(out + N - 2*SIMD_SZ), -8); - } - } else { - if (direction == PFFFT_FORWARD) { - for (k=0; k < Ncvec; ++k) { - int kk = (k/4) + (k%4)*(Ncvec/4); - INTERLEAVE2(vin[k*2], vin[k*2+1], vout[kk*2], vout[kk*2+1]); - } - } else { - for (k=0; k < Ncvec; ++k) { - int kk = (k/4) + (k%4)*(Ncvec/4); - UNINTERLEAVE2(vin[kk*2], vin[kk*2+1], vout[k*2], vout[k*2+1]); - } - } - } -} - -void pffft_cplx_finalize(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) { - int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks - v4sf r0, i0, r1, i1, r2, i2, r3, i3; - v4sf sr0, dr0, sr1, dr1, si0, di0, si1, di1; - assert(in != out); - for (k=0; k < dk; ++k) { - r0 = in[8*k+0]; i0 = in[8*k+1]; - r1 = in[8*k+2]; i1 = in[8*k+3]; - r2 = in[8*k+4]; i2 = in[8*k+5]; - r3 = in[8*k+6]; i3 = in[8*k+7]; - VTRANSPOSE4(r0,r1,r2,r3); - VTRANSPOSE4(i0,i1,i2,i3); - VCPLXMUL(r1,i1,e[k*6+0],e[k*6+1]); - VCPLXMUL(r2,i2,e[k*6+2],e[k*6+3]); - VCPLXMUL(r3,i3,e[k*6+4],e[k*6+5]); - - sr0 = VADD(r0,r2); dr0 = VSUB(r0, r2); - sr1 = VADD(r1,r3); dr1 = VSUB(r1, r3); - si0 = VADD(i0,i2); di0 = VSUB(i0, i2); - si1 = VADD(i1,i3); di1 = VSUB(i1, i3); - - /* - transformation for each column is: - - [1 1 1 1 0 0 0 0] [r0] - [1 0 -1 0 0 -1 0 1] [r1] - [1 -1 1 -1 0 0 0 0] [r2] - [1 0 -1 0 0 1 0 -1] [r3] - [0 0 0 0 1 1 1 1] * [i0] - [0 1 0 -1 1 0 -1 0] [i1] - [0 0 0 0 1 -1 1 -1] [i2] - [0 -1 0 1 1 0 -1 0] [i3] - */ - - r0 = VADD(sr0, sr1); i0 = VADD(si0, si1); - r1 = VADD(dr0, di1); i1 = VSUB(di0, dr1); - r2 = VSUB(sr0, sr1); i2 = VSUB(si0, si1); - r3 = VSUB(dr0, di1); i3 = VADD(di0, dr1); - - *out++ = r0; *out++ = i0; *out++ = r1; *out++ = i1; - *out++ = r2; *out++ = i2; *out++ = r3; *out++ = i3; - } -} - -void pffft_cplx_preprocess(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) { - int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks - v4sf r0, i0, r1, i1, r2, i2, r3, i3; - v4sf sr0, dr0, sr1, dr1, si0, di0, si1, di1; - assert(in != out); - for (k=0; k < dk; ++k) { - r0 = in[8*k+0]; i0 = in[8*k+1]; - r1 = in[8*k+2]; i1 = in[8*k+3]; - r2 = in[8*k+4]; i2 = in[8*k+5]; - r3 = in[8*k+6]; i3 = in[8*k+7]; - - sr0 = VADD(r0,r2); dr0 = VSUB(r0, r2); - sr1 = VADD(r1,r3); dr1 = VSUB(r1, r3); - si0 = VADD(i0,i2); di0 = VSUB(i0, i2); - si1 = VADD(i1,i3); di1 = VSUB(i1, i3); - - r0 = VADD(sr0, sr1); i0 = VADD(si0, si1); - r1 = VSUB(dr0, di1); i1 = VADD(di0, dr1); - r2 = VSUB(sr0, sr1); i2 = VSUB(si0, si1); - r3 = VADD(dr0, di1); i3 = VSUB(di0, dr1); - - VCPLXMULCONJ(r1,i1,e[k*6+0],e[k*6+1]); - VCPLXMULCONJ(r2,i2,e[k*6+2],e[k*6+3]); - VCPLXMULCONJ(r3,i3,e[k*6+4],e[k*6+5]); - - VTRANSPOSE4(r0,r1,r2,r3); - VTRANSPOSE4(i0,i1,i2,i3); - - *out++ = r0; *out++ = i0; *out++ = r1; *out++ = i1; - *out++ = r2; *out++ = i2; *out++ = r3; *out++ = i3; - } -} - - -static ALWAYS_INLINE(void) pffft_real_finalize_4x4(const v4sf *in0, const v4sf *in1, const v4sf *in, - const v4sf *e, v4sf *out) { - v4sf r0, i0, r1, i1, r2, i2, r3, i3; - v4sf sr0, dr0, sr1, dr1, si0, di0, si1, di1; - r0 = *in0; i0 = *in1; - r1 = *in++; i1 = *in++; r2 = *in++; i2 = *in++; r3 = *in++; i3 = *in++; - VTRANSPOSE4(r0,r1,r2,r3); - VTRANSPOSE4(i0,i1,i2,i3); - - /* - transformation for each column is: - - [1 1 1 1 0 0 0 0] [r0] - [1 0 -1 0 0 -1 0 1] [r1] - [1 0 -1 0 0 1 0 -1] [r2] - [1 -1 1 -1 0 0 0 0] [r3] - [0 0 0 0 1 1 1 1] * [i0] - [0 -1 0 1 -1 0 1 0] [i1] - [0 -1 0 1 1 0 -1 0] [i2] - [0 0 0 0 -1 1 -1 1] [i3] - */ - - //cerr << "matrix initial, before e , REAL:\n 1: " << r0 << "\n 1: " << r1 << "\n 1: " << r2 << "\n 1: " << r3 << "\n"; - //cerr << "matrix initial, before e, IMAG :\n 1: " << i0 << "\n 1: " << i1 << "\n 1: " << i2 << "\n 1: " << i3 << "\n"; - - VCPLXMUL(r1,i1,e[0],e[1]); - VCPLXMUL(r2,i2,e[2],e[3]); - VCPLXMUL(r3,i3,e[4],e[5]); - - //cerr << "matrix initial, real part:\n 1: " << r0 << "\n 1: " << r1 << "\n 1: " << r2 << "\n 1: " << r3 << "\n"; - //cerr << "matrix initial, imag part:\n 1: " << i0 << "\n 1: " << i1 << "\n 1: " << i2 << "\n 1: " << i3 << "\n"; - - sr0 = VADD(r0,r2); dr0 = VSUB(r0,r2); - sr1 = VADD(r1,r3); dr1 = VSUB(r3,r1); - si0 = VADD(i0,i2); di0 = VSUB(i0,i2); - si1 = VADD(i1,i3); di1 = VSUB(i3,i1); - - r0 = VADD(sr0, sr1); - r3 = VSUB(sr0, sr1); - i0 = VADD(si0, si1); - i3 = VSUB(si1, si0); - r1 = VADD(dr0, di1); - r2 = VSUB(dr0, di1); - i1 = VSUB(dr1, di0); - i2 = VADD(dr1, di0); - - *out++ = r0; - *out++ = i0; - *out++ = r1; - *out++ = i1; - *out++ = r2; - *out++ = i2; - *out++ = r3; - *out++ = i3; - -} - -static NEVER_INLINE(void) pffft_real_finalize(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) { - int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks - /* fftpack order is f0r f1r f1i f2r f2i ... f(n-1)r f(n-1)i f(n)r */ - - v4sf_union cr, ci, *uout = (v4sf_union*)out; - v4sf save = in[7], zero=VZERO(); - float xr0, xi0, xr1, xi1, xr2, xi2, xr3, xi3; - static const float s = M_SQRT2/2; - - cr.v = in[0]; ci.v = in[Ncvec*2-1]; - assert(in != out); - pffft_real_finalize_4x4(&zero, &zero, in+1, e, out); - - /* - [cr0 cr1 cr2 cr3 ci0 ci1 ci2 ci3] - - [Xr(1)] ] [1 1 1 1 0 0 0 0] - [Xr(N/4) ] [0 0 0 0 1 s 0 -s] - [Xr(N/2) ] [1 0 -1 0 0 0 0 0] - [Xr(3N/4)] [0 0 0 0 1 -s 0 s] - [Xi(1) ] [1 -1 1 -1 0 0 0 0] - [Xi(N/4) ] [0 0 0 0 0 -s -1 -s] - [Xi(N/2) ] [0 -1 0 1 0 0 0 0] - [Xi(3N/4)] [0 0 0 0 0 -s 1 -s] - */ - - xr0=(cr.f[0]+cr.f[2]) + (cr.f[1]+cr.f[3]); uout[0].f[0] = xr0; - xi0=(cr.f[0]+cr.f[2]) - (cr.f[1]+cr.f[3]); uout[1].f[0] = xi0; - xr2=(cr.f[0]-cr.f[2]); uout[4].f[0] = xr2; - xi2=(cr.f[3]-cr.f[1]); uout[5].f[0] = xi2; - xr1= ci.f[0] + s*(ci.f[1]-ci.f[3]); uout[2].f[0] = xr1; - xi1=-ci.f[2] - s*(ci.f[1]+ci.f[3]); uout[3].f[0] = xi1; - xr3= ci.f[0] - s*(ci.f[1]-ci.f[3]); uout[6].f[0] = xr3; - xi3= ci.f[2] - s*(ci.f[1]+ci.f[3]); uout[7].f[0] = xi3; - - for (k=1; k < dk; ++k) { - v4sf save_next = in[8*k+7]; - pffft_real_finalize_4x4(&save, &in[8*k+0], in + 8*k+1, - e + k*6, out + k*8); - save = save_next; - } - -} - -static ALWAYS_INLINE(void) pffft_real_preprocess_4x4(const v4sf *in, - const v4sf *e, v4sf *out, int first) { - v4sf r0=in[0], i0=in[1], r1=in[2], i1=in[3], r2=in[4], i2=in[5], r3=in[6], i3=in[7]; - /* - transformation for each column is: - - [1 1 1 1 0 0 0 0] [r0] - [1 0 0 -1 0 -1 -1 0] [r1] - [1 -1 -1 1 0 0 0 0] [r2] - [1 0 0 -1 0 1 1 0] [r3] - [0 0 0 0 1 -1 1 -1] * [i0] - [0 -1 1 0 1 0 0 1] [i1] - [0 0 0 0 1 1 -1 -1] [i2] - [0 1 -1 0 1 0 0 1] [i3] - */ - - v4sf sr0 = VADD(r0,r3), dr0 = VSUB(r0,r3); - v4sf sr1 = VADD(r1,r2), dr1 = VSUB(r1,r2); - v4sf si0 = VADD(i0,i3), di0 = VSUB(i0,i3); - v4sf si1 = VADD(i1,i2), di1 = VSUB(i1,i2); - - r0 = VADD(sr0, sr1); - r2 = VSUB(sr0, sr1); - r1 = VSUB(dr0, si1); - r3 = VADD(dr0, si1); - i0 = VSUB(di0, di1); - i2 = VADD(di0, di1); - i1 = VSUB(si0, dr1); - i3 = VADD(si0, dr1); - - VCPLXMULCONJ(r1,i1,e[0],e[1]); - VCPLXMULCONJ(r2,i2,e[2],e[3]); - VCPLXMULCONJ(r3,i3,e[4],e[5]); - - VTRANSPOSE4(r0,r1,r2,r3); - VTRANSPOSE4(i0,i1,i2,i3); - - if (!first) { - *out++ = r0; - *out++ = i0; - } - *out++ = r1; - *out++ = i1; - *out++ = r2; - *out++ = i2; - *out++ = r3; - *out++ = i3; -} - -static NEVER_INLINE(void) pffft_real_preprocess(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) { - int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks - /* fftpack order is f0r f1r f1i f2r f2i ... f(n-1)r f(n-1)i f(n)r */ - - v4sf_union Xr, Xi, *uout = (v4sf_union*)out; - float cr0, ci0, cr1, ci1, cr2, ci2, cr3, ci3; - static const float s = M_SQRT2; - assert(in != out); - for (k=0; k < 4; ++k) { - Xr.f[k] = ((float*)in)[8*k]; - Xi.f[k] = ((float*)in)[8*k+4]; - } - - pffft_real_preprocess_4x4(in, e, out+1, 1); // will write only 6 values - - /* - [Xr0 Xr1 Xr2 Xr3 Xi0 Xi1 Xi2 Xi3] - - [cr0] [1 0 2 0 1 0 0 0] - [cr1] [1 0 0 0 -1 0 -2 0] - [cr2] [1 0 -2 0 1 0 0 0] - [cr3] [1 0 0 0 -1 0 2 0] - [ci0] [0 2 0 2 0 0 0 0] - [ci1] [0 s 0 -s 0 -s 0 -s] - [ci2] [0 0 0 0 0 -2 0 2] - [ci3] [0 -s 0 s 0 -s 0 -s] - */ - for (k=1; k < dk; ++k) { - pffft_real_preprocess_4x4(in+8*k, e + k*6, out-1+k*8, 0); - } - - cr0=(Xr.f[0]+Xi.f[0]) + 2*Xr.f[2]; uout[0].f[0] = cr0; - cr1=(Xr.f[0]-Xi.f[0]) - 2*Xi.f[2]; uout[0].f[1] = cr1; - cr2=(Xr.f[0]+Xi.f[0]) - 2*Xr.f[2]; uout[0].f[2] = cr2; - cr3=(Xr.f[0]-Xi.f[0]) + 2*Xi.f[2]; uout[0].f[3] = cr3; - ci0= 2*(Xr.f[1]+Xr.f[3]); uout[2*Ncvec-1].f[0] = ci0; - ci1= s*(Xr.f[1]-Xr.f[3]) - s*(Xi.f[1]+Xi.f[3]); uout[2*Ncvec-1].f[1] = ci1; - ci2= 2*(Xi.f[3]-Xi.f[1]); uout[2*Ncvec-1].f[2] = ci2; - ci3=-s*(Xr.f[1]-Xr.f[3]) - s*(Xi.f[1]+Xi.f[3]); uout[2*Ncvec-1].f[3] = ci3; -} - - -void pffft_transform_internal(PFFFT_Setup *setup, const float *finput, float *foutput, v4sf *scratch, - pffft_direction_t direction, int ordered) { - int k, Ncvec = setup->Ncvec; - int nf_odd = (setup->ifac[1] & 1); - - // temporary buffer is allocated on the stack if the scratch pointer is NULL - int stack_allocate = (scratch == 0 ? Ncvec*2 : 1); - VLA_ARRAY_ON_STACK(v4sf, scratch_on_stack, stack_allocate); - - const v4sf *vinput = (const v4sf*)finput; - v4sf *voutput = (v4sf*)foutput; - v4sf *buff[2] = { voutput, scratch ? scratch : scratch_on_stack }; - int ib = (nf_odd ^ ordered ? 1 : 0); - - assert(VALIGNED(finput) && VALIGNED(foutput)); - - //assert(finput != foutput); - if (direction == PFFFT_FORWARD) { - ib = !ib; - if (setup->transform == PFFFT_REAL) { - ib = (rfftf1_ps(Ncvec*2, vinput, buff[ib], buff[!ib], - setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1); - pffft_real_finalize(Ncvec, buff[ib], buff[!ib], (v4sf*)setup->e); - } else { - v4sf *tmp = buff[ib]; - for (k=0; k < Ncvec; ++k) { - UNINTERLEAVE2(vinput[k*2], vinput[k*2+1], tmp[k*2], tmp[k*2+1]); - } - ib = (cfftf1_ps(Ncvec, buff[ib], buff[!ib], buff[ib], - setup->twiddle, &setup->ifac[0], -1) == buff[0] ? 0 : 1); - pffft_cplx_finalize(Ncvec, buff[ib], buff[!ib], (v4sf*)setup->e); - } - if (ordered) { - pffft_zreorder(setup, (float*)buff[!ib], (float*)buff[ib], PFFFT_FORWARD); - } else ib = !ib; - } else { - if (vinput == buff[ib]) { - ib = !ib; // may happen when finput == foutput - } - if (ordered) { - pffft_zreorder(setup, (float*)vinput, (float*)buff[ib], PFFFT_BACKWARD); - vinput = buff[ib]; ib = !ib; - } - if (setup->transform == PFFFT_REAL) { - pffft_real_preprocess(Ncvec, vinput, buff[ib], (v4sf*)setup->e); - ib = (rfftb1_ps(Ncvec*2, buff[ib], buff[0], buff[1], - setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1); - } else { - pffft_cplx_preprocess(Ncvec, vinput, buff[ib], (v4sf*)setup->e); - ib = (cfftf1_ps(Ncvec, buff[ib], buff[0], buff[1], - setup->twiddle, &setup->ifac[0], +1) == buff[0] ? 0 : 1); - for (k=0; k < Ncvec; ++k) { - INTERLEAVE2(buff[ib][k*2], buff[ib][k*2+1], buff[ib][k*2], buff[ib][k*2+1]); - } - } - } - - if (buff[ib] != voutput) { - /* extra copy required -- this situation should only happen when finput == foutput */ - assert(finput==foutput); - for (k=0; k < Ncvec; ++k) { - v4sf a = buff[ib][2*k], b = buff[ib][2*k+1]; - voutput[2*k] = a; voutput[2*k+1] = b; - } - ib = !ib; - } - assert(buff[ib] == voutput); -} - -void pffft_zconvolve_accumulate(PFFFT_Setup *s, const float *a, const float *b, float *ab, float scaling) { - int Ncvec = s->Ncvec; - const v4sf * RESTRICT va = (const v4sf*)a; - const v4sf * RESTRICT vb = (const v4sf*)b; - v4sf * RESTRICT vab = (v4sf*)ab; - -#ifdef __arm__ - __builtin_prefetch(va); - __builtin_prefetch(vb); - __builtin_prefetch(vab); - __builtin_prefetch(va+2); - __builtin_prefetch(vb+2); - __builtin_prefetch(vab+2); - __builtin_prefetch(va+4); - __builtin_prefetch(vb+4); - __builtin_prefetch(vab+4); - __builtin_prefetch(va+6); - __builtin_prefetch(vb+6); - __builtin_prefetch(vab+6); -# ifndef __clang__ -# define ZCONVOLVE_USING_INLINE_NEON_ASM -# endif -#endif - - float ar, ai, br, bi, abr, abi; -#ifndef ZCONVOLVE_USING_INLINE_ASM - v4sf vscal = LD_PS1(scaling); - int i; -#endif - - assert(VALIGNED(a) && VALIGNED(b) && VALIGNED(ab)); - ar = ((v4sf_union*)va)[0].f[0]; - ai = ((v4sf_union*)va)[1].f[0]; - br = ((v4sf_union*)vb)[0].f[0]; - bi = ((v4sf_union*)vb)[1].f[0]; - abr = ((v4sf_union*)vab)[0].f[0]; - abi = ((v4sf_union*)vab)[1].f[0]; - -#ifdef ZCONVOLVE_USING_INLINE_ASM // inline asm version, unfortunately miscompiled by clang 3.2, at least on ubuntu.. so this will be restricted to gcc - const float *a_ = a, *b_ = b; float *ab_ = ab; - int N = Ncvec; - asm volatile("mov r8, %2 \n" - "vdup.f32 q15, %4 \n" - "1: \n" - "pld [%0,#64] \n" - "pld [%1,#64] \n" - "pld [%2,#64] \n" - "pld [%0,#96] \n" - "pld [%1,#96] \n" - "pld [%2,#96] \n" - "vld1.f32 {q0,q1}, [%0,:128]! \n" - "vld1.f32 {q4,q5}, [%1,:128]! \n" - "vld1.f32 {q2,q3}, [%0,:128]! \n" - "vld1.f32 {q6,q7}, [%1,:128]! \n" - "vld1.f32 {q8,q9}, [r8,:128]! \n" - - "vmul.f32 q10, q0, q4 \n" - "vmul.f32 q11, q0, q5 \n" - "vmul.f32 q12, q2, q6 \n" - "vmul.f32 q13, q2, q7 \n" - "vmls.f32 q10, q1, q5 \n" - "vmla.f32 q11, q1, q4 \n" - "vld1.f32 {q0,q1}, [r8,:128]! \n" - "vmls.f32 q12, q3, q7 \n" - "vmla.f32 q13, q3, q6 \n" - "vmla.f32 q8, q10, q15 \n" - "vmla.f32 q9, q11, q15 \n" - "vmla.f32 q0, q12, q15 \n" - "vmla.f32 q1, q13, q15 \n" - "vst1.f32 {q8,q9},[%2,:128]! \n" - "vst1.f32 {q0,q1},[%2,:128]! \n" - "subs %3, #2 \n" - "bne 1b \n" - : "+r"(a_), "+r"(b_), "+r"(ab_), "+r"(N) : "r"(scaling) : "r8", "q0","q1","q2","q3","q4","q5","q6","q7","q8","q9", "q10","q11","q12","q13","q15","memory"); -#else // default routine, works fine for non-arm cpus with current compilers - for (i=0; i < Ncvec; i += 2) { - v4sf ar, ai, br, bi; - ar = va[2*i+0]; ai = va[2*i+1]; - br = vb[2*i+0]; bi = vb[2*i+1]; - VCPLXMUL(ar, ai, br, bi); - vab[2*i+0] = VMADD(ar, vscal, vab[2*i+0]); - vab[2*i+1] = VMADD(ai, vscal, vab[2*i+1]); - ar = va[2*i+2]; ai = va[2*i+3]; - br = vb[2*i+2]; bi = vb[2*i+3]; - VCPLXMUL(ar, ai, br, bi); - vab[2*i+2] = VMADD(ar, vscal, vab[2*i+2]); - vab[2*i+3] = VMADD(ai, vscal, vab[2*i+3]); - } -#endif - if (s->transform == PFFFT_REAL) { - ((v4sf_union*)vab)[0].f[0] = abr + ar*br*scaling; - ((v4sf_union*)vab)[1].f[0] = abi + ai*bi*scaling; - } -} - - -#else // defined(PFFFT_SIMD_DISABLE) - -// standard routine using scalar floats, without SIMD stuff. - -#define pffft_zreorder_nosimd pffft_zreorder -void pffft_zreorder_nosimd(PFFFT_Setup *setup, const float *in, float *out, pffft_direction_t direction) { - int k, N = setup->N; - if (setup->transform == PFFFT_COMPLEX) { - for (k=0; k < 2*N; ++k) out[k] = in[k]; - return; - } - else if (direction == PFFFT_FORWARD) { - float x_N = in[N-1]; - for (k=N-1; k > 1; --k) out[k] = in[k-1]; - out[0] = in[0]; - out[1] = x_N; - } else { - float x_N = in[1]; - for (k=1; k < N-1; ++k) out[k] = in[k+1]; - out[0] = in[0]; - out[N-1] = x_N; - } -} - -#define pffft_transform_internal_nosimd pffft_transform_internal -void pffft_transform_internal_nosimd(PFFFT_Setup *setup, const float *input, float *output, float *scratch, - pffft_direction_t direction, int ordered) { - int Ncvec = setup->Ncvec; - int nf_odd = (setup->ifac[1] & 1); - - // temporary buffer is allocated on the stack if the scratch pointer is NULL - int stack_allocate = (scratch == 0 ? Ncvec*2 : 1); - VLA_ARRAY_ON_STACK(v4sf, scratch_on_stack, stack_allocate); - float *buff[2]; - int ib; - if (scratch == 0) scratch = scratch_on_stack; - buff[0] = output; buff[1] = scratch; - - if (setup->transform == PFFFT_COMPLEX) ordered = 0; // it is always ordered. - ib = (nf_odd ^ ordered ? 1 : 0); - - if (direction == PFFFT_FORWARD) { - if (setup->transform == PFFFT_REAL) { - ib = (rfftf1_ps(Ncvec*2, input, buff[ib], buff[!ib], - setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1); - } else { - ib = (cfftf1_ps(Ncvec, input, buff[ib], buff[!ib], - setup->twiddle, &setup->ifac[0], -1) == buff[0] ? 0 : 1); - } - if (ordered) { - pffft_zreorder(setup, buff[ib], buff[!ib], PFFFT_FORWARD); ib = !ib; - } - } else { - if (input == buff[ib]) { - ib = !ib; // may happen when finput == foutput - } - if (ordered) { - pffft_zreorder(setup, input, buff[!ib], PFFFT_BACKWARD); - input = buff[!ib]; - } - if (setup->transform == PFFFT_REAL) { - ib = (rfftb1_ps(Ncvec*2, input, buff[ib], buff[!ib], - setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1); - } else { - ib = (cfftf1_ps(Ncvec, input, buff[ib], buff[!ib], - setup->twiddle, &setup->ifac[0], +1) == buff[0] ? 0 : 1); - } - } - if (buff[ib] != output) { - int k; - // extra copy required -- this situation should happens only when finput == foutput - assert(input==output); - for (k=0; k < Ncvec; ++k) { - float a = buff[ib][2*k], b = buff[ib][2*k+1]; - output[2*k] = a; output[2*k+1] = b; - } - ib = !ib; - } - assert(buff[ib] == output); -} - -#define pffft_zconvolve_accumulate_nosimd pffft_zconvolve_accumulate -void pffft_zconvolve_accumulate_nosimd(PFFFT_Setup *s, const float *a, const float *b, - float *ab, float scaling) { - int i, Ncvec = s->Ncvec; - - if (s->transform == PFFFT_REAL) { - // take care of the fftpack ordering - ab[0] += a[0]*b[0]*scaling; - ab[2*Ncvec-1] += a[2*Ncvec-1]*b[2*Ncvec-1]*scaling; - ++ab; ++a; ++b; --Ncvec; - } - for (i=0; i < Ncvec; ++i) { - float ar, ai, br, bi; - ar = a[2*i+0]; ai = a[2*i+1]; - br = b[2*i+0]; bi = b[2*i+1]; - VCPLXMUL(ar, ai, br, bi); - ab[2*i+0] += ar*scaling; - ab[2*i+1] += ai*scaling; - } -} - -#endif // defined(PFFFT_SIMD_DISABLE) - -void pffft_transform(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction) { - pffft_transform_internal(setup, input, output, (v4sf*)work, direction, 0); -} - -void pffft_transform_ordered(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction) { - pffft_transform_internal(setup, input, output, (v4sf*)work, direction, 1); -} diff --git a/oss-internship-2020/pffft/pffft.h b/oss-internship-2020/pffft/pffft.h deleted file mode 100644 index 2bfa7b3..0000000 --- a/oss-internship-2020/pffft/pffft.h +++ /dev/null @@ -1,177 +0,0 @@ -/* Copyright (c) 2013 Julien Pommier ( pommier@modartt.com ) - - Based on original fortran 77 code from FFTPACKv4 from NETLIB, - authored by Dr Paul Swarztrauber of NCAR, in 1985. - - As confirmed by the NCAR fftpack software curators, the following - FFTPACKv5 license applies to FFTPACKv4 sources. My changes are - released under the same terms. - - FFTPACK license: - - http://www.cisl.ucar.edu/css/software/fftpack5/ftpk.html - - Copyright (c) 2004 the University Corporation for Atmospheric - Research ("UCAR"). All rights reserved. Developed by NCAR's - Computational and Information Systems Laboratory, UCAR, - www.cisl.ucar.edu. - - Redistribution and use of the Software in source and binary forms, - with or without modification, is permitted provided that the - following conditions are met: - - - Neither the names of NCAR's Computational and Information Systems - Laboratory, the University Corporation for Atmospheric Research, - nor the names of its sponsors or contributors may be used to - endorse or promote products derived from this Software without - specific prior written permission. - - - Redistributions of source code must retain the above copyright - notices, this list of conditions, and the disclaimer below. - - - Redistributions in binary form must reproduce the above copyright - notice, this list of conditions, and the disclaimer below in the - documentation and/or other materials provided with the - distribution. - - THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, - EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE WARRANTIES OF - MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND - NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT - HOLDERS BE LIABLE FOR ANY CLAIM, INDIRECT, INCIDENTAL, SPECIAL, - EXEMPLARY, OR CONSEQUENTIAL DAMAGES OR OTHER LIABILITY, WHETHER IN AN - ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE - SOFTWARE. -*/ - -/* - PFFFT : a Pretty Fast FFT. - - This is basically an adaptation of the single precision fftpack - (v4) as found on netlib taking advantage of SIMD instruction found - on cpus such as intel x86 (SSE1), powerpc (Altivec), and arm (NEON). - - For architectures where no SIMD instruction is available, the code - falls back to a scalar version. - - Restrictions: - - - 1D transforms only, with 32-bit single precision. - - - supports only transforms for inputs of length N of the form - N=(2^a)*(3^b)*(5^c), a >= 5, b >=0, c >= 0 (32, 48, 64, 96, 128, - 144, 160, etc are all acceptable lengths). Performance is best for - 128<=N<=8192. - - - all (float*) pointers in the functions below are expected to - have an "simd-compatible" alignment, that is 16 bytes on x86 and - powerpc CPUs. - - You can allocate such buffers with the functions - pffft_aligned_malloc / pffft_aligned_free (or with stuff like - posix_memalign..) - -*/ - -#ifndef PFFFT_H -#define PFFFT_H - -#include // for size_t - -#ifdef __cplusplus -extern "C" { -#endif - - /* opaque struct holding internal stuff (precomputed twiddle factors) - this struct can be shared by many threads as it contains only - read-only data. - */ - typedef struct PFFFT_Setup PFFFT_Setup; - - /* direction of the transform */ - typedef enum { PFFFT_FORWARD, PFFFT_BACKWARD } pffft_direction_t; - - /* type of transform */ - typedef enum { PFFFT_REAL, PFFFT_COMPLEX } pffft_transform_t; - - /* - prepare for performing transforms of size N -- the returned - PFFFT_Setup structure is read-only so it can safely be shared by - multiple concurrent threads. - */ - PFFFT_Setup *pffft_new_setup(int N, pffft_transform_t transform); - void pffft_destroy_setup(PFFFT_Setup *); - /* - Perform a Fourier transform , The z-domain data is stored in the - most efficient order for transforming it back, or using it for - convolution. If you need to have its content sorted in the - "usual" way, that is as an array of interleaved complex numbers, - either use pffft_transform_ordered , or call pffft_zreorder after - the forward fft, and before the backward fft. - - Transforms are not scaled: PFFFT_BACKWARD(PFFFT_FORWARD(x)) = N*x. - Typically you will want to scale the backward transform by 1/N. - - The 'work' pointer should point to an area of N (2*N for complex - fft) floats, properly aligned. If 'work' is NULL, then stack will - be used instead (this is probably the best strategy for small - FFTs, say for N < 16384). - - input and output may alias. - */ - void pffft_transform(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction); - - /* - Similar to pffft_transform, but makes sure that the output is - ordered as expected (interleaved complex numbers). This is - similar to calling pffft_transform and then pffft_zreorder. - - input and output may alias. - */ - void pffft_transform_ordered(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction); - - /* - call pffft_zreorder(.., PFFFT_FORWARD) after pffft_transform(..., - PFFFT_FORWARD) if you want to have the frequency components in - the correct "canonical" order, as interleaved complex numbers. - - (for real transforms, both 0-frequency and half frequency - components, which are real, are assembled in the first entry as - F(0)+i*F(n/2+1). Note that the original fftpack did place - F(n/2+1) at the end of the arrays). - - input and output should not alias. - */ - void pffft_zreorder(PFFFT_Setup *setup, const float *input, float *output, pffft_direction_t direction); - - /* - Perform a multiplication of the frequency components of dft_a and - dft_b and accumulate them into dft_ab. The arrays should have - been obtained with pffft_transform(.., PFFFT_FORWARD) and should - *not* have been reordered with pffft_zreorder (otherwise just - perform the operation yourself as the dft coefs are stored as - interleaved complex numbers). - - the operation performed is: dft_ab += (dft_a * fdt_b)*scaling - - The dft_a, dft_b and dft_ab pointers may alias. - */ - void pffft_zconvolve_accumulate(PFFFT_Setup *setup, const float *dft_a, const float *dft_b, float *dft_ab, float scaling); - - /* - the float buffers must have the correct alignment (16-byte boundary - on intel and powerpc). This function may be used to obtain such - correctly aligned buffers. - */ - void *pffft_aligned_malloc(size_t nb_bytes); - void pffft_aligned_free(void *); - - /* return 4 or 1 wether support SSE/Altivec instructions was enable when building pffft.c */ - int pffft_simd_size(); - -#ifdef __cplusplus -} -#endif - -#endif // PFFFT_H diff --git a/oss-internship-2020/pffft/test_pffft.c b/oss-internship-2020/pffft/test_pffft.c deleted file mode 100644 index a5d20c2..0000000 --- a/oss-internship-2020/pffft/test_pffft.c +++ /dev/null @@ -1,419 +0,0 @@ -/* - Copyright (c) 2013 Julien Pommier. - - Small test & bench for PFFFT, comparing its performance with the scalar FFTPACK, FFTW, and Apple vDSP - - How to build: - - on linux, with fftw3: - gcc -o test_pffft -DHAVE_FFTW -msse -mfpmath=sse -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -lm - - on macos, without fftw3: - clang -o test_pffft -DHAVE_VECLIB -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -framework Accelerate - - on macos, with fftw3: - clang -o test_pffft -DHAVE_FFTW -DHAVE_VECLIB -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -framework Accelerate - - on windows, with visual c++: - cl /Ox -D_USE_MATH_DEFINES /arch:SSE test_pffft.c pffft.c fftpack.c - - build without SIMD instructions: - gcc -o test_pffft -DPFFFT_SIMD_DISABLE -O3 -Wall -W pffft.c test_pffft.c fftpack.c -lm - - */ - -#include "pffft.h" -#include "fftpack.h" - -#include -#include -#include -#include -#include -#include - -#ifdef HAVE_SYS_TIMES -# include -# include -#endif - -#ifdef HAVE_VECLIB -# include -#endif - -#ifdef HAVE_FFTW -# include -#endif - -#define MAX(x,y) ((x)>(y)?(x):(y)) - -double frand() { - return rand()/(double)RAND_MAX; -} - -#if defined(HAVE_SYS_TIMES) - inline double uclock_sec(void) { - static double ttclk = 0.; - if (ttclk == 0.) ttclk = sysconf(_SC_CLK_TCK); - struct tms t; return ((double)times(&t)) / ttclk; - } -# else - double uclock_sec(void) -{ return (double)clock()/(double)CLOCKS_PER_SEC; } -#endif - - -/* compare results with the regular fftpack */ -void pffft_validate_N(int N, int cplx) { - int Nfloat = N*(cplx?2:1); - int Nbytes = Nfloat * sizeof(float); - float *ref, *in, *out, *tmp, *tmp2; - PFFFT_Setup *s = pffft_new_setup(N, cplx ? PFFFT_COMPLEX : PFFFT_REAL); - int pass; - - if (!s) { printf("Skipping N=%d, not supported\n", N); return; } - ref = pffft_aligned_malloc(Nbytes); - in = pffft_aligned_malloc(Nbytes); - out = pffft_aligned_malloc(Nbytes); - tmp = pffft_aligned_malloc(Nbytes); - tmp2 = pffft_aligned_malloc(Nbytes); - - for (pass=0; pass < 2; ++pass) { - float ref_max = 0; - int k; - //printf("N=%d pass=%d cplx=%d\n", N, pass, cplx); - // compute reference solution with FFTPACK - if (pass == 0) { - float *wrk = malloc(2*Nbytes+15*sizeof(float)); - for (k=0; k < Nfloat; ++k) { - ref[k] = in[k] = frand()*2-1; - out[k] = 1e30; - } - if (!cplx) { - rffti(N, wrk); - rfftf(N, ref, wrk); - // use our ordering for real ffts instead of the one of fftpack - { - float refN=ref[N-1]; - for (k=N-2; k >= 1; --k) ref[k+1] = ref[k]; - ref[1] = refN; - } - } else { - cffti(N, wrk); - cfftf(N, ref, wrk); - } - free(wrk); - } - - for (k = 0; k < Nfloat; ++k) ref_max = MAX(ref_max, fabs(ref[k])); - - - // pass 0 : non canonical ordering of transform coefficients - if (pass == 0) { - // test forward transform, with different input / output - pffft_transform(s, in, tmp, 0, PFFFT_FORWARD); - memcpy(tmp2, tmp, Nbytes); - memcpy(tmp, in, Nbytes); - pffft_transform(s, tmp, tmp, 0, PFFFT_FORWARD); - for (k = 0; k < Nfloat; ++k) { - assert(tmp2[k] == tmp[k]); - } - - // test reordering - pffft_zreorder(s, tmp, out, PFFFT_FORWARD); - pffft_zreorder(s, out, tmp, PFFFT_BACKWARD); - for (k = 0; k < Nfloat; ++k) { - assert(tmp2[k] == tmp[k]); - } - pffft_zreorder(s, tmp, out, PFFFT_FORWARD); - } else { - // pass 1 : canonical ordering of transform coeffs. - pffft_transform_ordered(s, in, tmp, 0, PFFFT_FORWARD); - memcpy(tmp2, tmp, Nbytes); - memcpy(tmp, in, Nbytes); - pffft_transform_ordered(s, tmp, tmp, 0, PFFFT_FORWARD); - for (k = 0; k < Nfloat; ++k) { - assert(tmp2[k] == tmp[k]); - } - memcpy(out, tmp, Nbytes); - } - - { - for (k=0; k < Nfloat; ++k) { - if (!(fabs(ref[k] - out[k]) < 1e-3*ref_max)) { - printf("%s forward PFFFT mismatch found for N=%d\n", (cplx?"CPLX":"REAL"), N); - exit(1); - } - } - - if (pass == 0) pffft_transform(s, tmp, out, 0, PFFFT_BACKWARD); - else pffft_transform_ordered(s, tmp, out, 0, PFFFT_BACKWARD); - memcpy(tmp2, out, Nbytes); - memcpy(out, tmp, Nbytes); - if (pass == 0) pffft_transform(s, out, out, 0, PFFFT_BACKWARD); - else pffft_transform_ordered(s, out, out, 0, PFFFT_BACKWARD); - for (k = 0; k < Nfloat; ++k) { - assert(tmp2[k] == out[k]); - out[k] *= 1.f/N; - } - for (k = 0; k < Nfloat; ++k) { - if (fabs(in[k] - out[k]) > 1e-3 * ref_max) { - printf("pass=%d, %s IFFFT does not match for N=%d\n", pass, (cplx?"CPLX":"REAL"), N); break; - exit(1); - } - } - } - - // quick test of the circular convolution in fft domain - { - float conv_err = 0, conv_max = 0; - - pffft_zreorder(s, ref, tmp, PFFFT_FORWARD); - memset(out, 0, Nbytes); - pffft_zconvolve_accumulate(s, ref, ref, out, 1.0); - pffft_zreorder(s, out, tmp2, PFFFT_FORWARD); - - for (k=0; k < Nfloat; k += 2) { - float ar = tmp[k], ai=tmp[k+1]; - if (cplx || k > 0) { - tmp[k] = ar*ar - ai*ai; - tmp[k+1] = 2*ar*ai; - } else { - tmp[0] = ar*ar; - tmp[1] = ai*ai; - } - } - - for (k=0; k < Nfloat; ++k) { - float d = fabs(tmp[k] - tmp2[k]), e = fabs(tmp[k]); - if (d > conv_err) conv_err = d; - if (e > conv_max) conv_max = e; - } - if (conv_err > 1e-5*conv_max) { - printf("zconvolve error ? %g %g\n", conv_err, conv_max); exit(1); - } - } - - } - - printf("%s PFFFT is OK for N=%d\n", (cplx?"CPLX":"REAL"), N); fflush(stdout); - - pffft_destroy_setup(s); - pffft_aligned_free(ref); - pffft_aligned_free(in); - pffft_aligned_free(out); - pffft_aligned_free(tmp); - pffft_aligned_free(tmp2); -} - -void pffft_validate(int cplx) { - static int Ntest[] = { 16, 32, 64, 96, 128, 160, 192, 256, 288, 384, 5*96, 512, 576, 5*128, 800, 864, 1024, 2048, 2592, 4000, 4096, 12000, 36864, 0}; - int k; - for (k = 0; Ntest[k]; ++k) { - int N = Ntest[k]; - if (N == 16 && !cplx) continue; - pffft_validate_N(N, cplx); - } -} - -int array_output_format = 0; - -void show_output(const char *name, int N, int cplx, float flops, float t0, float t1, int max_iter) { - float mflops = flops/1e6/(t1 - t0 + 1e-16); - if (array_output_format) { - if (flops != -1) { - printf("|%9.0f ", mflops); - } else printf("| n/a "); - } else { - if (flops != -1) { - printf("N=%5d, %s %16s : %6.0f MFlops [t=%6.0f ns, %d runs]\n", N, (cplx?"CPLX":"REAL"), name, mflops, (t1-t0)/2/max_iter * 1e9, max_iter); - } - } - fflush(stdout); -} - -void benchmark_ffts(int N, int cplx) { - int Nfloat = (cplx ? N*2 : N); - int Nbytes = Nfloat * sizeof(float); - float *X = pffft_aligned_malloc(Nbytes), *Y = pffft_aligned_malloc(Nbytes), *Z = pffft_aligned_malloc(Nbytes); - - double t0, t1, flops; - - int k; - int max_iter = 5120000/N*4; -#ifdef __arm__ - max_iter /= 4; -#endif - int iter; - - for (k = 0; k < Nfloat; ++k) { - X[k] = 0; //sqrtf(k+1); - } - - // FFTPack benchmark - { - float *wrk = malloc(2*Nbytes + 15*sizeof(float)); - int max_iter_ = max_iter/pffft_simd_size(); if (max_iter_ == 0) max_iter_ = 1; - if (cplx) cffti(N, wrk); - else rffti(N, wrk); - t0 = uclock_sec(); - - for (iter = 0; iter < max_iter_; ++iter) { - if (cplx) { - cfftf(N, X, wrk); - cfftb(N, X, wrk); - } else { - rfftf(N, X, wrk); - rfftb(N, X, wrk); - } - } - t1 = uclock_sec(); - free(wrk); - - flops = (max_iter_*2) * ((cplx ? 5 : 2.5)*N*log((double)N)/M_LN2); // see http://www.fftw.org/speed/method.html - show_output("FFTPack", N, cplx, flops, t0, t1, max_iter_); - } - -#ifdef HAVE_VECLIB - int log2N = (int)(log(N)/log(2) + 0.5f); - if (N == (1< 1 && strcmp(argv[1], "--array-format") == 0) { - array_output_format = 1; - } - -#ifndef PFFFT_SIMD_DISABLE - validate_pffft_simd(); -#endif - pffft_validate(1); - pffft_validate(0); - if (!array_output_format) { - for (i=0; Nvalues[i] > 0; ++i) { - benchmark_ffts(Nvalues[i], 0 /* real fft */); - } - for (i=0; Nvalues[i] > 0; ++i) { - benchmark_ffts(Nvalues[i], 1 /* cplx fft */); - } - } else { - printf("| input len "); - printf("|real FFTPack"); -#ifdef HAVE_VECLIB - printf("| real vDSP "); -#endif -#ifdef HAVE_FFTW - printf("| real FFTW "); -#endif - printf("| real PFFFT | "); - - printf("|cplx FFTPack"); -#ifdef HAVE_VECLIB - printf("| cplx vDSP "); -#endif -#ifdef HAVE_FFTW - printf("| cplx FFTW "); -#endif - printf("| cplx PFFFT |\n"); - for (i=0; Nvalues[i] > 0; ++i) { - printf("|%9d ", Nvalues[i]); - benchmark_ffts(Nvalues[i], 0); - printf("| "); - benchmark_ffts(Nvalues[i], 1); - printf("|\n"); - } - printf(" (numbers are given in MFlops)\n"); - } - - - return 0; -}