sandboxed-api/sandboxed_api/sandbox2/forkserver.cc

690 lines
24 KiB
C++
Raw Normal View History

// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Implementation of the sandbox2::ForkServer class.
#include "sandboxed_api/sandbox2/forkserver.h"
#include <fcntl.h>
#include <linux/filter.h>
#include <linux/seccomp.h>
#include <sched.h>
#include <sys/eventfd.h>
#include <sys/prctl.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <sys/wait.h>
#include <syscall.h>
#include <unistd.h>
#include <cerrno>
#include <csignal>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <initializer_list>
#include <string>
#include <utility>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/container/flat_hash_map.h"
#include "absl/container/flat_hash_set.h"
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/strings/match.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_join.h"
#include "absl/strings/str_split.h"
#include "absl/strings/string_view.h"
#include "libcap/include/sys/capability.h"
#include "sandboxed_api/sandbox2/client.h"
#include "sandboxed_api/sandbox2/comms.h"
#include "sandboxed_api/sandbox2/fork_client.h"
#include "sandboxed_api/sandbox2/forkserver.pb.h"
#include "sandboxed_api/sandbox2/namespace.h"
#include "sandboxed_api/sandbox2/policy.h"
#include "sandboxed_api/sandbox2/sanitizer.h"
#include "sandboxed_api/sandbox2/syscall.h"
#include "sandboxed_api/sandbox2/util.h"
#include "sandboxed_api/sandbox2/util/bpf_helper.h"
#include "sandboxed_api/util/fileops.h"
#include "sandboxed_api/util/raw_logging.h"
#include "sandboxed_api/util/strerror.h"
namespace sandbox2 {
namespace {
using ::sapi::StrError;
using ::sapi::file_util::fileops::FDCloser;
// "Moves" FDs in move_fds from current to target FD number while keeping FDs
// in keep_fds open - potentially moving them to another FD number as well in
// case of colisions.
// Ignores invalid (-1) fds.
void MoveFDs(std::initializer_list<std::pair<int*, int>> move_fds,
std::initializer_list<int*> keep_fds) {
absl::flat_hash_map<int, int*> fd_map;
for (int* fd : keep_fds) {
if (*fd != -1) {
fd_map.emplace(*fd, fd);
}
}
for (auto [old_fd, new_fd] : move_fds) {
if (*old_fd != -1) {
fd_map.emplace(*old_fd, old_fd);
}
}
for (auto [old_fd, new_fd] : move_fds) {
if (*old_fd == -1 || *old_fd == new_fd) {
continue;
}
// Make sure we won't override another fd
if (auto it = fd_map.find(new_fd); it != fd_map.end()) {
int fd = dup(new_fd);
SAPI_RAW_CHECK(fd != -1, "Duplicating an FD failed.");
*it->second = fd;
fd_map.emplace(fd, it->second);
fd_map.erase(it);
}
if (dup2(*old_fd, new_fd) == -1) {
SAPI_RAW_PLOG(FATAL, "Moving temporary to proper FD failed.");
}
close(*old_fd);
fd_map.erase(*old_fd);
*old_fd = new_fd;
}
}
ABSL_ATTRIBUTE_NORETURN void RunInitProcess(pid_t main_pid, FDCloser pipe_fd) {
if (prctl(PR_SET_NAME, "S2-INIT-PROC", 0, 0, 0) != 0) {
SAPI_RAW_PLOG(WARNING, "prctl(PR_SET_NAME, 'S2-INIT-PROC')");
}
// Clear SA_NOCLDWAIT.
struct sigaction sa;
sa.sa_handler = SIG_DFL;
sa.sa_flags = 0;
sigemptyset(&sa.sa_mask);
SAPI_RAW_CHECK(sigaction(SIGCHLD, &sa, nullptr) == 0,
"clearing SA_NOCLDWAIT");
// Apply seccomp.
std::vector<sock_filter> code = {
LOAD_ARCH,
JNE32(sandbox2::Syscall::GetHostAuditArch(), DENY),
LOAD_SYSCALL_NR,
SYSCALL(__NR_waitid, ALLOW),
SYSCALL(__NR_exit, ALLOW),
};
if (pipe_fd.get() >= 0) {
code.insert(code.end(),
{SYSCALL(__NR_getrusage, ALLOW), SYSCALL(__NR_write, ALLOW)});
}
code.push_back(DENY);
struct sock_fprog prog {
.len = static_cast<uint16_t>(code.size()), .filter = code.data(),
};
SAPI_RAW_CHECK(prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) == 0,
"Denying new privs");
SAPI_RAW_CHECK(prctl(PR_SET_KEEPCAPS, 0) == 0, "Dropping caps");
SAPI_RAW_CHECK(
syscall(__NR_seccomp, SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC,
reinterpret_cast<uintptr_t>(&prog)) == 0,
"Enabling seccomp filter");
siginfo_t info;
// Reap children.
for (;;) {
int rv = TEMP_FAILURE_RETRY(waitid(P_ALL, -1, &info, WEXITED | __WALL));
if (rv != 0) {
_exit(1);
}
if (info.si_pid == main_pid) {
if (pipe_fd.get() >= 0) {
write(pipe_fd.get(), &info.si_code, sizeof(info.si_code));
write(pipe_fd.get(), &info.si_status, sizeof(info.si_status));
rusage usage{};
getrusage(RUSAGE_CHILDREN, &usage);
write(pipe_fd.get(), &usage, sizeof(usage));
}
_exit(0);
}
}
}
absl::Status SendPid(int signaling_fd) {
// Send our PID (the actual sandboxee process) via SCM_CREDENTIALS.
// The ancillary message will be attached to the message as SO_PASSCRED is set
// on the socket.
char dummy = ' ';
if (TEMP_FAILURE_RETRY(send(signaling_fd, &dummy, 1, 0)) != 1) {
return absl::ErrnoToStatus(errno, "Sending PID: send()");
}
return absl::OkStatus();
}
absl::StatusOr<pid_t> ReceivePid(int signaling_fd) {
union {
struct cmsghdr cmh;
char ctrl[CMSG_SPACE(sizeof(struct ucred))];
} ucred_msg{};
struct msghdr msgh {};
struct iovec iov {};
msgh.msg_iov = &iov;
msgh.msg_iovlen = 1;
msgh.msg_control = ucred_msg.ctrl;
msgh.msg_controllen = sizeof(ucred_msg);
char dummy;
iov.iov_base = &dummy;
iov.iov_len = sizeof(char);
if (TEMP_FAILURE_RETRY(recvmsg(signaling_fd, &msgh, MSG_WAITALL)) != 1) {
return absl::ErrnoToStatus(errno, "Receiving pid failed: recvmsg");
}
struct cmsghdr* cmsgp = CMSG_FIRSTHDR(&msgh);
if (cmsgp->cmsg_len != CMSG_LEN(sizeof(struct ucred)) ||
cmsgp->cmsg_level != SOL_SOCKET || cmsgp->cmsg_type != SCM_CREDENTIALS) {
return absl::InternalError("Receiving pid failed");
}
auto* ucredp = reinterpret_cast<struct ucred*>(CMSG_DATA(cmsgp));
return ucredp->pid;
}
absl::StatusOr<std::string> GetRootMountId(const std::string& proc_id) {
std::ifstream mounts(absl::StrCat("/proc/", proc_id, "/mountinfo"));
if (!mounts.good()) {
return absl::InternalError("Failed to open mountinfo");
}
std::string line;
while (std::getline(mounts, line)) {
std::vector<absl::string_view> parts =
absl::StrSplit(line, absl::MaxSplits(' ', 4));
if (parts.size() >= 4 && parts[3] == "/") {
return std::string(parts[0]);
}
}
return absl::NotFoundError("Root entry not found in mountinfo");
}
bool IsLikelyChrooted() {
absl::StatusOr<std::string> self_root_id = GetRootMountId("self");
if (!self_root_id.ok()) {
return absl::IsNotFound(self_root_id.status());
}
absl::StatusOr<std::string> init_root_id = GetRootMountId("1");
if (!init_root_id.ok()) {
return false;
}
return *self_root_id != *init_root_id;
}
} // namespace
void ForkServer::PrepareExecveArgs(const ForkRequest& request,
std::vector<std::string>* args,
std::vector<std::string>* envp) {
// Prepare arguments for execve.
for (const auto& arg : request.args()) {
args->push_back(arg);
}
// Prepare environment variables for execve.
for (const auto& env : request.envs()) {
envp->push_back(env);
}
// The child process should not start any fork-servers.
envp->push_back(absl::StrCat(kForkServerDisableEnv, "=1"));
constexpr char kSapiVlogLevel[] = "SAPI_VLOG_LEVEL";
char* sapi_vlog = getenv(kSapiVlogLevel);
if (sapi_vlog && strlen(sapi_vlog) > 0) {
envp->push_back(absl::StrCat(kSapiVlogLevel, "=", sapi_vlog));
}
SAPI_RAW_VLOG(1, "Will execute args:['%s'], environment:['%s']",
absl::StrJoin(*args, "', '").c_str(),
absl::StrJoin(*envp, "', '").c_str());
}
void ForkServer::LaunchChild(const ForkRequest& request, int execve_fd,
uid_t uid, gid_t gid, FDCloser signaling_fd,
FDCloser status_fd, bool avoid_pivot_root) const {
SAPI_RAW_CHECK(request.mode() != FORKSERVER_FORK_UNSPECIFIED,
"Forkserver mode is unspecified");
const bool will_execve = execve_fd != -1;
const bool should_sandbox = request.mode() == FORKSERVER_FORK_EXECVE_SANDBOX;
absl::StatusOr<absl::flat_hash_set<int>> open_fds = sanitizer::GetListOfFDs();
if (!open_fds.ok()) {
SAPI_RAW_LOG(WARNING, "Could not get list of current open FDs: %s",
std::string(open_fds.status().message()).c_str());
open_fds = absl::flat_hash_set<int>();
}
SanitizeEnvironment();
InitializeNamespaces(request, uid, gid, avoid_pivot_root);
auto caps = cap_init();
SAPI_RAW_CHECK(cap_set_proc(caps) == 0, "while dropping capabilities");
cap_free(caps);
// A custom init process is only needed if a new PID NS is created.
if (request.clone_flags() & CLONE_NEWPID) {
// Spawn a child process
pid_t child = util::ForkWithFlags(SIGCHLD);
if (child < 0) {
SAPI_RAW_PLOG(FATAL, "Could not spawn init process");
}
if (child != 0) {
if (status_fd.get() >= 0) {
open_fds->erase(status_fd.get());
}
// Close all open fds (equals to CloseAllFDsExcept but does not require
// /proc to be available).
for (const auto& fd : *open_fds) {
close(fd);
}
RunInitProcess(child, std::move(status_fd));
}
// Send sandboxee pid
auto status = SendPid(signaling_fd.get());
SAPI_RAW_CHECK(status.ok(),
absl::StrCat("sending pid: ", status.message()).c_str());
}
signaling_fd.Close();
status_fd.Close();
Client c(comms_);
// Prepare the arguments before sandboxing (if needed), as doing it after
// sandoxing can cause syscall violations (e.g. related to memory management).
std::vector<std::string> args;
std::vector<std::string> envs;
if (will_execve) {
PrepareExecveArgs(request, &args, &envs);
}
// Sandboxing can be enabled either here - just before execve, or somewhere
// inside the executed binary (e.g. after basic structures have been
// initialized, and resources acquired). In the latter case, it's up to the
// sandboxed binary to establish proper Comms channel (using
// Comms::kSandbox2ClientCommsFD) and call sandbox2::Client::SandboxMeHere()
if (should_sandbox) {
// The following client calls are basically SandboxMeHere. We split it so
// that we can set up the envp after we received the file descriptors but
// before we enable the syscall filter.
c.PrepareEnvironment(&execve_fd);
if (comms_->GetConnectionFD() != Comms::kSandbox2ClientCommsFD) {
envs.push_back(absl::StrCat(Comms::kSandbox2CommsFDEnvVar, "=",
comms_->GetConnectionFD()));
}
envs.push_back(c.GetFdMapEnvVar());
}
// Convert args and envs before enabling sandbox (it'll allocate which might
// be blocked).
util::CharPtrArray argv = util::CharPtrArray::FromStringVector(args);
util::CharPtrArray envp = util::CharPtrArray::FromStringVector(envs);
if (should_sandbox) {
c.EnableSandbox();
}
if (will_execve) {
ExecuteProcess(execve_fd, argv.data(), envp.data());
}
}
pid_t ForkServer::ServeRequest() {
ForkRequest fork_request;
if (!comms_->RecvProtoBuf(&fork_request)) {
if (comms_->IsTerminated()) {
return -1;
}
SAPI_RAW_LOG(FATAL, "Failed to receive ForkServer request");
}
int comms_fd;
SAPI_RAW_CHECK(comms_->RecvFD(&comms_fd), "Failed to receive Comms FD");
SAPI_RAW_CHECK(fork_request.mode() != FORKSERVER_FORK_UNSPECIFIED,
"Forkserver mode is unspecified");
int exec_fd = -1;
if (fork_request.mode() == FORKSERVER_FORK_EXECVE ||
fork_request.mode() == FORKSERVER_FORK_EXECVE_SANDBOX) {
SAPI_RAW_CHECK(comms_->RecvFD(&exec_fd), "Failed to receive Exec FD");
}
// Make the kernel notify us with SIGCHLD when the process terminates.
// We use sigaction(SIGCHLD, flags=SA_NOCLDWAIT) in combination with
// this to make sure the zombie process is reaped immediately.
int clone_flags = fork_request.clone_flags() | SIGCHLD;
// Store uid and gid since they will change if CLONE_NEWUSER is set.
uid_t uid = getuid();
uid_t gid = getgid();
FDCloser pipe_fds[2];
{
int pfds[2] = {-1, -1};
if (fork_request.monitor_type() == FORKSERVER_MONITOR_UNOTIFY) {
SAPI_RAW_PCHECK(pipe(pfds) == 0, "creating status pipe");
}
pipe_fds[0] = FDCloser(pfds[0]);
pipe_fds[1] = FDCloser(pfds[1]);
}
int socketpair_fds[2];
SAPI_RAW_PCHECK(
socketpair(AF_UNIX, SOCK_STREAM | SOCK_CLOEXEC, 0, socketpair_fds) == 0,
"creating signaling socketpair");
for (int i = 0; i < 2; i++) {
int val = 1;
SAPI_RAW_PCHECK(setsockopt(socketpair_fds[i], SOL_SOCKET, SO_PASSCRED, &val,
sizeof(val)) == 0,
"setsockopt failed");
}
FDCloser signaling_fds[] = {FDCloser(socketpair_fds[0]),
FDCloser(socketpair_fds[1])};
// Note: init_pid will be overwritten with the actual init pid if the init
// process was started or stays at 0 if that is not needed - no pidns.
pid_t init_pid = 0;
pid_t sandboxee_pid = -1;
bool avoid_pivot_root = clone_flags & (CLONE_NEWUSER | CLONE_NEWNS);
if (avoid_pivot_root) {
// Create initial namespaces only when they're first needed.
// This allows sandbox2 to be still used without any namespaces support
if (initial_mntns_fd_ == -1) {
CreateInitialNamespaces();
}
// We first just fork a child, which will join the initial namespaces
// Note: Not a regular fork() as one really needs to be single-threaded to
// setns and this is not the case with TSAN.
pid_t pid = util::ForkWithFlags(SIGCHLD);
SAPI_RAW_PCHECK(pid != -1, "fork failed");
if (pid == 0) {
SAPI_RAW_PCHECK(setns(initial_userns_fd_, CLONE_NEWUSER) != -1,
"joining initial user namespace");
SAPI_RAW_PCHECK(setns(initial_mntns_fd_, CLONE_NEWNS) != -1,
"joining initial mnt namespace");
close(initial_userns_fd_);
close(initial_mntns_fd_);
// Do not create new userns it will be unshared later
sandboxee_pid =
util::ForkWithFlags((clone_flags & ~CLONE_NEWUSER) | CLONE_PARENT);
if (sandboxee_pid == -1) {
SAPI_RAW_LOG(ERROR, "util::ForkWithFlags(%x)", clone_flags);
}
if (sandboxee_pid != 0) {
_exit(0);
}
// Send sandboxee pid
absl::Status status = SendPid(signaling_fds[1].get());
SAPI_RAW_CHECK(status.ok(),
absl::StrCat("sending pid: ", status.message()).c_str());
}
} else {
sandboxee_pid = util::ForkWithFlags(clone_flags);
if (sandboxee_pid == -1) {
SAPI_RAW_LOG(ERROR, "util::ForkWithFlags(%x)", clone_flags);
}
if (sandboxee_pid == 0) {
close(initial_userns_fd_);
close(initial_mntns_fd_);
}
}
// Child.
if (sandboxee_pid == 0) {
signaling_fds[0].Close();
pipe_fds[0].Close();
// Make sure we override the forkserver's comms fd
comms_->Terminate();
if (exec_fd != -1) {
int signaling_fd = signaling_fds[1].Release();
int pipe_fd = pipe_fds[1].Release();
MoveFDs({{&exec_fd, Comms::kSandbox2TargetExecFD},
{&comms_fd, Comms::kSandbox2ClientCommsFD}},
{&signaling_fd, &pipe_fd});
signaling_fds[1] = FDCloser(signaling_fd);
pipe_fds[1] = FDCloser(pipe_fd);
}
*comms_ = Comms(comms_fd);
LaunchChild(fork_request, exec_fd, uid, gid, std::move(signaling_fds[1]),
std::move(pipe_fds[1]), avoid_pivot_root);
return sandboxee_pid;
}
signaling_fds[1].Close();
if (avoid_pivot_root) {
if (auto pid = ReceivePid(signaling_fds[0].get()); !pid.ok()) {
SAPI_RAW_LOG(ERROR, "%s", std::string(pid.status().message()).c_str());
} else {
sandboxee_pid = pid.value();
}
}
if (fork_request.clone_flags() & CLONE_NEWPID) {
// The pid of the init process is equal to the child process that we've
// previously forked.
init_pid = sandboxee_pid;
sandboxee_pid = -1;
// And the actual sandboxee is forked from the init process, so we need to
// receive the actual PID.
if (auto pid_or = ReceivePid(signaling_fds[0].get()); !pid_or.ok()) {
SAPI_RAW_LOG(ERROR, "%s", std::string(pid_or.status().message()).c_str());
if (init_pid != -1) {
kill(init_pid, SIGKILL);
}
init_pid = -1;
} else {
sandboxee_pid = pid_or.value();
}
}
// Parent.
pipe_fds[1].Close();
close(comms_fd);
if (exec_fd >= 0) {
close(exec_fd);
}
SAPI_RAW_CHECK(comms_->SendInt32(init_pid),
absl::StrCat("Failed to send init PID: ", init_pid).c_str());
SAPI_RAW_CHECK(
comms_->SendInt32(sandboxee_pid),
absl::StrCat("Failed to send sandboxee PID: ", sandboxee_pid).c_str());
if (pipe_fds[0].get() >= 0) {
SAPI_RAW_CHECK(comms_->SendFD(pipe_fds[0].get()),
"Failed to send status pipe");
}
return sandboxee_pid;
}
bool ForkServer::IsTerminated() const { return comms_->IsTerminated(); }
bool ForkServer::Initialize() {
// For safety drop as many capabilities as possible.
// Note that cap_t is actually a pointer.
cap_t have_caps = cap_get_proc(); // caps we currently have
SAPI_RAW_CHECK(have_caps, "failed to cap_get_proc()");
cap_t wanted_caps = cap_init(); // starts as empty set, ie. no caps
SAPI_RAW_CHECK(wanted_caps, "failed to cap_init()");
// CAP_SYS_PTRACE appears to be needed for apparmor (or possibly yama)
// CAP_SETFCAP is needed on newer kernels (5.10 needs it, 4.15 does not)
for (cap_value_t cap : {CAP_SYS_PTRACE, CAP_SETFCAP}) {
for (cap_flag_t flag : {CAP_EFFECTIVE, CAP_PERMITTED}) {
cap_flag_value_t value;
int rc = cap_get_flag(have_caps, cap, flag, &value);
SAPI_RAW_CHECK(!rc, "cap_get_flag");
if (value == CAP_SET) {
cap_value_t caps_to_set[1] = {
cap,
};
rc = cap_set_flag(wanted_caps, flag, 1, caps_to_set, CAP_SET);
SAPI_RAW_CHECK(!rc, "cap_set_flag");
}
}
}
SAPI_RAW_CHECK(!cap_set_proc(wanted_caps), "while dropping capabilities");
SAPI_RAW_CHECK(!cap_free(wanted_caps), "while freeing wanted_caps");
SAPI_RAW_CHECK(!cap_free(have_caps), "while freeing have_caps");
// All processes spawned by the fork'd/execute'd process will see this process
// as /sbin/init. Therefore it will receive (and ignore) their final status
// (see the next comment as well). PR_SET_CHILD_SUBREAPER is available since
// kernel version 3.4, so don't panic if it fails.
if (prctl(PR_SET_CHILD_SUBREAPER, 1, 0, 0, 0) == -1) {
SAPI_RAW_VLOG(3, "prctl(PR_SET_CHILD_SUBREAPER, 1): %s [%d]",
StrError(errno).c_str(), errno);
}
// Don't convert terminated child processes into zombies. It's up to the
// sandbox (Monitor) to track them and receive/report their final status.
struct sigaction sa;
sa.sa_handler = SIG_DFL;
sa.sa_flags = SA_NOCLDWAIT;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGCHLD, &sa, nullptr) == -1) {
SAPI_RAW_PLOG(ERROR, "sigaction(SIGCHLD, flags=SA_NOCLDWAIT)");
return false;
}
return true;
}
void ForkServer::CreateInitialNamespaces() {
// Spawn a new process to create initial user and mount namespaces to be used
// as a base for each namespaced sandboxee.
// Store uid and gid to create mappings after CLONE_NEWUSER
uid_t uid = getuid();
gid_t gid = getgid();
// Socket to synchronize so that we open ns fds before process dies
FDCloser create_efd(eventfd(0, EFD_CLOEXEC));
SAPI_RAW_PCHECK(create_efd.get() != -1, "creating eventfd");
FDCloser open_efd(eventfd(0, EFD_CLOEXEC));
SAPI_RAW_PCHECK(open_efd.get() != -1, "creating eventfd");
pid_t pid = util::ForkWithFlags(CLONE_NEWUSER | CLONE_NEWNS | SIGCHLD);
if (pid == -1 && errno == EPERM && IsLikelyChrooted()) {
SAPI_RAW_LOG(FATAL,
"failed to fork initial namespaces process: parent process is "
"likely chrooted");
}
SAPI_RAW_PCHECK(pid != -1, "failed to fork initial namespaces process");
uint64_t value = 1;
if (pid == 0) {
Namespace::InitializeInitialNamespaces(uid, gid);
SAPI_RAW_PCHECK(TEMP_FAILURE_RETRY(write(create_efd.get(), &value,
sizeof(value))) == sizeof(value),
"synchronizing initial namespaces creation");
SAPI_RAW_PCHECK(TEMP_FAILURE_RETRY(read(open_efd.get(), &value,
sizeof(value))) == sizeof(value),
"synchronizing initial namespaces creation");
SAPI_RAW_PCHECK(chroot("/realroot") == 0,
"chrooting prior to dumping coverage");
util::DumpCoverageData();
_exit(0);
}
SAPI_RAW_PCHECK(TEMP_FAILURE_RETRY(read(create_efd.get(), &value,
sizeof(value))) == sizeof(value),
"synchronizing initial namespaces creation");
initial_userns_fd_ = open(absl::StrCat("/proc/", pid, "/ns/user").c_str(),
O_RDONLY | O_CLOEXEC);
SAPI_RAW_PCHECK(initial_userns_fd_ != -1, "getting initial userns fd");
initial_mntns_fd_ = open(absl::StrCat("/proc/", pid, "/ns/mnt").c_str(),
O_RDONLY | O_CLOEXEC);
SAPI_RAW_PCHECK(initial_mntns_fd_ != -1, "getting initial mntns fd");
SAPI_RAW_PCHECK(TEMP_FAILURE_RETRY(write(open_efd.get(), &value,
sizeof(value))) == sizeof(value),
"synchronizing initial namespaces creation");
}
void ForkServer::SanitizeEnvironment() const {
// Mark all file descriptors, except the standard ones (needed
// for proper sandboxed process operations), as close-on-exec.
absl::Status status = sanitizer::SanitizeCurrentProcess(
{STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO, comms_->GetConnectionFD()},
/* close_fds = */ false);
SAPI_RAW_CHECK(
status.ok(),
absl::StrCat("while sanitizing process: ", status.message()).c_str());
}
void ForkServer::ExecuteProcess(int execve_fd, const char* const* argv,
const char* const* envp) {
// Do not add any code before execve(), as it's subject to seccomp policies.
// Indicate that it's a special execve(), by setting 4th, 5th and 6th syscall
// argument to magic values.
util::Execveat(execve_fd, "", argv, envp, AT_EMPTY_PATH,
internal::kExecveMagic);
int saved_errno = errno;
SAPI_RAW_PLOG(ERROR, "execveat failed");
if (argv[0]) {
SAPI_RAW_LOG(ERROR, "argv[0]=%s", argv[0]);
}
if (saved_errno == ENOSYS) {
SAPI_RAW_LOG(ERROR,
"This is likely caused by running on a kernel that is too old."
);
} else if (saved_errno == ENOENT && execve_fd >= 0) {
// Since we know the file exists, it must be that the file is dynamically
// linked and the ELF interpreter is what's actually missing.
SAPI_RAW_LOG(
ERROR,
"This is likely caused by running dynamically-linked sandboxee without "
"calling .AddLibrariesForBinary() on the policy builder.");
}
util::Syscall(__NR_exit_group, EXIT_FAILURE);
abort();
}
void ForkServer::InitializeNamespaces(const ForkRequest& request, uid_t uid,
gid_t gid, bool avoid_pivot_root) {
if (!request.has_mount_tree()) {
return;
}
Namespace::InitializeNamespaces(
uid, gid, request.clone_flags(), Mounts(request.mount_tree()),
request.hostname(), avoid_pivot_root, request.allow_mount_propagation());
}
} // namespace sandbox2