py-libp2p/libp2p/security/secio/transport.py
2019-10-24 20:10:45 +02:00

470 lines
15 KiB
Python

from dataclasses import dataclass
import io
import itertools
from typing import Optional, Tuple
import multihash
from libp2p.crypto.authenticated_encryption import (
EncryptionParameters as AuthenticatedEncryptionParameters,
)
from libp2p.crypto.authenticated_encryption import (
initialize_pair as initialize_pair_for_encryption,
)
from libp2p.crypto.authenticated_encryption import MacAndCipher as Encrypter
from libp2p.crypto.ecc import ECCPublicKey
from libp2p.crypto.key_exchange import create_ephemeral_key_pair
from libp2p.crypto.keys import PrivateKey, PublicKey
from libp2p.crypto.serialization import deserialize_public_key
from libp2p.io.exceptions import IOException
from libp2p.io.msgio import MsgIOReadWriter
from libp2p.network.connection.raw_connection_interface import IRawConnection
from libp2p.peer.id import ID as PeerID
from libp2p.security.base_session import BaseSession
from libp2p.security.base_transport import BaseSecureTransport
from libp2p.security.secure_conn_interface import ISecureConn
from .exceptions import (
IncompatibleChoices,
InconsistentNonce,
InvalidSignatureOnExchange,
PeerMismatchException,
SecioException,
SelfEncryption,
)
from .pb.spipe_pb2 import Exchange, Propose
ID = "/secio/1.0.0"
NONCE_SIZE = 16 # bytes
# NOTE: the following is only a subset of allowable parameters according to the
# `secio` specification.
DEFAULT_SUPPORTED_EXCHANGES = "P-256"
DEFAULT_SUPPORTED_CIPHERS = "AES-128"
DEFAULT_SUPPORTED_HASHES = "SHA256"
class SecureSession(BaseSession):
buf: io.BytesIO
low_watermark: int
high_watermark: int
def __init__(
self,
local_peer: PeerID,
local_private_key: PrivateKey,
local_encryption_parameters: AuthenticatedEncryptionParameters,
remote_peer: PeerID,
remote_encryption_parameters: AuthenticatedEncryptionParameters,
conn: MsgIOReadWriter,
initiator: bool,
) -> None:
super().__init__(local_peer, local_private_key, initiator, remote_peer)
self.conn = conn
self.local_encryption_parameters = local_encryption_parameters
self.remote_encryption_parameters = remote_encryption_parameters
self._initialize_authenticated_encryption_for_local_peer()
self._initialize_authenticated_encryption_for_remote_peer()
self._reset_internal_buffer()
def _initialize_authenticated_encryption_for_local_peer(self) -> None:
self.local_encrypter = Encrypter(self.local_encryption_parameters)
def _initialize_authenticated_encryption_for_remote_peer(self) -> None:
self.remote_encrypter = Encrypter(self.remote_encryption_parameters)
async def next_msg_len(self) -> int:
return await self.conn.next_msg_len()
def _reset_internal_buffer(self) -> None:
self.buf = io.BytesIO()
self.low_watermark = 0
self.high_watermark = 0
def _drain(self, n: int) -> bytes:
if self.low_watermark == self.high_watermark:
return bytes()
data = self.buf.getbuffer()[self.low_watermark : self.high_watermark]
if n < 0:
n = len(data)
result = data[:n].tobytes()
self.low_watermark += len(result)
if self.low_watermark == self.high_watermark:
del data # free the memoryview so we can free the underlying BytesIO
self.buf.close()
self._reset_internal_buffer()
return result
async def _fill(self) -> None:
msg = await self.read_msg()
self.buf.write(msg)
self.low_watermark = 0
self.high_watermark = len(msg)
async def read(self, n: int = -1) -> bytes:
data_from_buffer = self._drain(n)
if len(data_from_buffer) > 0:
return data_from_buffer
next_length = await self.next_msg_len()
if n < next_length:
await self._fill()
return self._drain(n)
else:
return await self.read_msg()
async def read_msg(self) -> bytes:
msg = await self.conn.read_msg()
return self.remote_encrypter.decrypt_if_valid(msg)
async def write(self, data: bytes) -> int:
await self.write_msg(data)
return len(data)
async def write_msg(self, msg: bytes) -> None:
encrypted_data = self.local_encrypter.encrypt(msg)
tag = self.local_encrypter.authenticate(encrypted_data)
await self.conn.write_msg(encrypted_data + tag)
@dataclass(frozen=True)
class Proposal:
"""A ``Proposal`` represents the set of session parameters one peer in a
pair of peers attempting to negotiate a `secio` channel prefers."""
nonce: bytes
public_key: PublicKey
exchanges: str = DEFAULT_SUPPORTED_EXCHANGES # comma separated list
ciphers: str = DEFAULT_SUPPORTED_CIPHERS # comma separated list
hashes: str = DEFAULT_SUPPORTED_HASHES # comma separated list
def serialize(self) -> bytes:
protobuf = Propose(
rand=self.nonce,
public_key=self.public_key.serialize(),
exchanges=self.exchanges,
ciphers=self.ciphers,
hashes=self.hashes,
)
return protobuf.SerializeToString()
@classmethod
def deserialize(cls, protobuf_bytes: bytes) -> "Proposal":
protobuf = Propose.FromString(protobuf_bytes)
nonce = protobuf.rand
public_key_protobuf_bytes = protobuf.public_key
public_key = deserialize_public_key(public_key_protobuf_bytes)
exchanges = protobuf.exchanges
ciphers = protobuf.ciphers
hashes = protobuf.hashes
return cls(nonce, public_key, exchanges, ciphers, hashes)
def calculate_peer_id(self) -> PeerID:
return PeerID.from_pubkey(self.public_key)
@dataclass
class EncryptionParameters:
permanent_public_key: PublicKey
curve_type: str
cipher_type: str
hash_type: str
ephemeral_public_key: PublicKey
def __init__(self) -> None:
pass
@dataclass
class SessionParameters:
local_peer: PeerID
local_encryption_parameters: EncryptionParameters
remote_peer: PeerID
remote_encryption_parameters: EncryptionParameters
# order is a comparator used to break the symmetry b/t each pair of peers
order: int
shared_key: bytes
def __init__(self) -> None:
pass
async def _response_to_msg(read_writer: MsgIOReadWriter, msg: bytes) -> bytes:
await read_writer.write_msg(msg)
return await read_writer.read_msg()
def _mk_multihash_sha256(data: bytes) -> bytes:
return multihash.digest(data, "sha2-256")
def _mk_score(public_key: PublicKey, nonce: bytes) -> bytes:
return _mk_multihash_sha256(public_key.serialize() + nonce)
def _select_parameter_from_order(
order: int, supported_parameters: str, available_parameters: str
) -> str:
if order < 0:
first_choices = available_parameters.split(",")
second_choices = supported_parameters.split(",")
elif order > 0:
first_choices = supported_parameters.split(",")
second_choices = available_parameters.split(",")
else:
return supported_parameters.split(",")[0]
for first, second in itertools.product(first_choices, second_choices):
if first == second:
return first
raise IncompatibleChoices()
def _select_encryption_parameters(
local_proposal: Proposal, remote_proposal: Proposal
) -> Tuple[str, str, str, int]:
first_score = _mk_score(remote_proposal.public_key, local_proposal.nonce)
second_score = _mk_score(local_proposal.public_key, remote_proposal.nonce)
order = 0
if first_score < second_score:
order = -1
elif second_score < first_score:
order = 1
if order == 0:
raise SelfEncryption()
return (
_select_parameter_from_order(
order, DEFAULT_SUPPORTED_EXCHANGES, remote_proposal.exchanges
),
_select_parameter_from_order(
order, DEFAULT_SUPPORTED_CIPHERS, remote_proposal.ciphers
),
_select_parameter_from_order(
order, DEFAULT_SUPPORTED_HASHES, remote_proposal.hashes
),
order,
)
async def _establish_session_parameters(
local_peer: PeerID,
local_private_key: PrivateKey,
remote_peer: Optional[PeerID],
conn: MsgIOReadWriter,
nonce: bytes,
) -> Tuple[SessionParameters, bytes]:
# establish shared encryption parameters
session_parameters = SessionParameters()
session_parameters.local_peer = local_peer
local_encryption_parameters = EncryptionParameters()
session_parameters.local_encryption_parameters = local_encryption_parameters
local_public_key = local_private_key.get_public_key()
local_encryption_parameters.permanent_public_key = local_public_key
local_proposal = Proposal(nonce, local_public_key)
serialized_local_proposal = local_proposal.serialize()
serialized_remote_proposal = await _response_to_msg(conn, serialized_local_proposal)
remote_encryption_parameters = EncryptionParameters()
session_parameters.remote_encryption_parameters = remote_encryption_parameters
remote_proposal = Proposal.deserialize(serialized_remote_proposal)
remote_encryption_parameters.permanent_public_key = remote_proposal.public_key
remote_peer_from_proposal = remote_proposal.calculate_peer_id()
if not remote_peer:
remote_peer = remote_peer_from_proposal
elif remote_peer != remote_peer_from_proposal:
raise PeerMismatchException(
{
"expected_remote_peer": remote_peer,
"received_remote_peer": remote_peer_from_proposal,
}
)
session_parameters.remote_peer = remote_peer
curve_param, cipher_param, hash_param, order = _select_encryption_parameters(
local_proposal, remote_proposal
)
local_encryption_parameters.curve_type = curve_param
local_encryption_parameters.cipher_type = cipher_param
local_encryption_parameters.hash_type = hash_param
remote_encryption_parameters.curve_type = curve_param
remote_encryption_parameters.cipher_type = cipher_param
remote_encryption_parameters.hash_type = hash_param
session_parameters.order = order
# exchange ephemeral pub keys
local_ephemeral_public_key, shared_key_generator = create_ephemeral_key_pair(
curve_param
)
local_encryption_parameters.ephemeral_public_key = local_ephemeral_public_key
local_selection = (
serialized_local_proposal
+ serialized_remote_proposal
+ local_ephemeral_public_key.to_bytes()
)
exchange_signature = local_private_key.sign(local_selection)
local_exchange = Exchange(
ephemeral_public_key=local_ephemeral_public_key.to_bytes(),
signature=exchange_signature,
)
serialized_local_exchange = local_exchange.SerializeToString()
serialized_remote_exchange = await _response_to_msg(conn, serialized_local_exchange)
remote_exchange = Exchange()
remote_exchange.ParseFromString(serialized_remote_exchange)
remote_ephemeral_public_key_bytes = remote_exchange.ephemeral_public_key
remote_ephemeral_public_key = ECCPublicKey.from_bytes(
remote_ephemeral_public_key_bytes, curve_param
)
remote_encryption_parameters.ephemeral_public_key = remote_ephemeral_public_key
remote_selection = (
serialized_remote_proposal
+ serialized_local_proposal
+ remote_ephemeral_public_key_bytes
)
valid_signature = remote_encryption_parameters.permanent_public_key.verify(
remote_selection, remote_exchange.signature
)
if not valid_signature:
raise InvalidSignatureOnExchange()
shared_key = shared_key_generator(remote_ephemeral_public_key_bytes)
session_parameters.shared_key = shared_key
return session_parameters, remote_proposal.nonce
def _mk_session_from(
local_private_key: PrivateKey,
session_parameters: SessionParameters,
conn: MsgIOReadWriter,
initiator: bool,
) -> SecureSession:
key_set1, key_set2 = initialize_pair_for_encryption(
session_parameters.local_encryption_parameters.cipher_type,
session_parameters.local_encryption_parameters.hash_type,
session_parameters.shared_key,
)
if session_parameters.order < 0:
key_set1, key_set2 = key_set2, key_set1
session = SecureSession(
session_parameters.local_peer,
local_private_key,
key_set1,
session_parameters.remote_peer,
key_set2,
conn,
initiator,
)
return session
async def _finish_handshake(session: SecureSession, remote_nonce: bytes) -> bytes:
await session.write_msg(remote_nonce)
return await session.read_msg()
async def create_secure_session(
local_nonce: bytes,
local_peer: PeerID,
local_private_key: PrivateKey,
conn: IRawConnection,
remote_peer: PeerID = None,
) -> ISecureConn:
"""
Attempt the initial `secio` handshake with the remote peer.
If successful, return an object that provides secure communication
to the ``remote_peer``. Raise `SecioException` when `conn` closed.
Raise `InconsistentNonce` when handshake failed
"""
msg_io = MsgIOReadWriter(conn)
try:
session_parameters, remote_nonce = await _establish_session_parameters(
local_peer, local_private_key, remote_peer, msg_io, local_nonce
)
except SecioException as e:
await conn.close()
raise e
# `IOException` includes errors raised while read from/write to raw connection
except IOException:
raise SecioException("connection closed")
initiator = remote_peer is not None
session = _mk_session_from(local_private_key, session_parameters, msg_io, initiator)
try:
received_nonce = await _finish_handshake(session, remote_nonce)
# `IOException` includes errors raised while read from/write to raw connection
except IOException:
raise SecioException("connection closed")
if received_nonce != local_nonce:
await conn.close()
raise InconsistentNonce()
return session
class Transport(BaseSecureTransport):
"""``Transport`` provides a security upgrader for a ``IRawConnection``,
following the `secio` protocol defined in the libp2p specs."""
def get_nonce(self) -> bytes:
return self.secure_bytes_provider(NONCE_SIZE)
async def secure_inbound(self, conn: IRawConnection) -> ISecureConn:
"""
Secure the connection, either locally or by communicating with opposing
node via conn, for an inbound connection (i.e. we are not the
initiator)
:return: secure connection object (that implements secure_conn_interface)
"""
local_nonce = self.get_nonce()
local_peer = self.local_peer
local_private_key = self.local_private_key
return await create_secure_session(
local_nonce, local_peer, local_private_key, conn
)
async def secure_outbound(
self, conn: IRawConnection, peer_id: PeerID
) -> ISecureConn:
"""
Secure the connection, either locally or by communicating with opposing
node via conn, for an inbound connection (i.e. we are the initiator)
:return: secure connection object (that implements secure_conn_interface)
"""
local_nonce = self.get_nonce()
local_peer = self.local_peer
local_private_key = self.local_private_key
return await create_secure_session(
local_nonce, local_peer, local_private_key, conn, peer_id
)