import heapq from operator import itemgetter from libp2p.peer.peerinfo import PeerInfo class KadPeerInfo(PeerInfo): def __init__(self, peer_id, peer_data): super(KadPeerInfo, self).__init__(peer_id, peer_data) self.long_id = int(peer_id.hex(), 16) def same_home_as(self, node): #TODO: handle more than one addr return self.addrs[0] == node.addrs[0] def distance_to(self, node): """ Get the distance between this node and another. """ return self.long_id ^ node.long_id def __iter__(self): """ Enables use of Node as a tuple - i.e., tuple(node) works. """ return iter([self.peer_id.pretty(), str(self.addrs[0])]) def __repr__(self): return repr([self.long_id, str(self.addrs[0])]) def __str__(self): return str(self.addrs[0]) class KadPeerHeap: """ A heap of peers ordered by distance to a given node. """ def __init__(self, node, maxsize): """ Constructor. @param node: The node to measure all distnaces from. @param maxsize: The maximum size that this heap can grow to. """ self.node = node self.heap = [] self.contacted = set() self.maxsize = maxsize def remove(self, peers): """ Remove a list of peer ids from this heap. Note that while this heap retains a constant visible size (based on the iterator), it's actual size may be quite a bit larger than what's exposed. Therefore, removal of nodes may not change the visible size as previously added nodes suddenly become visible. """ peers = set(peers) if not peers: return nheap = [] for distance, node in self.heap: if node.peer_id not in peers: heapq.heappush(nheap, (distance, node)) self.heap = nheap def get_node(self, node_id): for _, node in self.heap: if node.peer_id == node_id: return node return None def have_contacted_all(self): return len(self.get_uncontacted()) == 0 def get_ids(self): return [n.peer_id for n in self] def mark_contacted(self, node): self.contacted.add(node.peer_id) def popleft(self): return heapq.heappop(self.heap)[1] if self else None def push(self, nodes): """ Push nodes onto heap. @param nodes: This can be a single item or a C{list}. """ if not isinstance(nodes, list): nodes = [nodes] for node in nodes: if node not in self: distance = self.node.distance_to(node) heapq.heappush(self.heap, (distance, node)) def __len__(self): return min(len(self.heap), self.maxsize) def __iter__(self): nodes = heapq.nsmallest(self.maxsize, self.heap) return iter(map(itemgetter(1), nodes)) def __contains__(self, node): for _, other in self.heap: if node.peer_id == other.peer_id: return True return False def get_uncontacted(self): return [n for n in self if n.peer_id not in self.contacted]