import asyncio import multiaddr import pytest import random from tests.utils import cleanup from libp2p import new_node from libp2p.peer.peerinfo import info_from_p2p_addr from libp2p.pubsub.pb import rpc_pb2 from libp2p.pubsub.pubsub import Pubsub from libp2p.pubsub.floodsub import FloodSub from utils import generate_message_id, generate_RPC_packet # pylint: disable=too-many-locals async def connect(node1, node2): """ Connect node1 to node2 """ addr = node2.get_addrs()[0] info = info_from_p2p_addr(addr) await node1.connect(info) async def perform_test_from_obj(obj): """ Perform a floodsub test from a test obj. test obj are composed as follows: { "supported_protocols": ["supported/protocol/1.0.0",...], "adj_list": { "node1": ["neighbor1_of_node1", "neighbor2_of_node1", ...], "node2": ["neighbor1_of_node2", "neighbor2_of_node2", ...], ... }, "topic_map": { "topic1": ["node1_subscribed_to_topic1", "node2_subscribed_to_topic1", ...] }, "messages": [ { "topics": ["topic1_for_message", "topic2_for_message", ...], "data": "some contents of the message (newlines are not supported)", "node_id": "message sender node id" }, ... ] } NOTE: In adj_list, for any neighbors A and B, only list B as a neighbor of A or B as a neighbor of A once. Do NOT list both A: ["B"] and B:["A"] as the behavior is undefined (even if it may work) """ # Step 1) Create graph adj_list = obj["adj_list"] node_map = {} floodsub_map = {} pubsub_map = {} supported_protocols = obj["supported_protocols"] tasks_connect = [] for start_node_id in adj_list: # Create node if node does not yet exist if start_node_id not in node_map: node = await new_node(transport_opt=["/ip4/127.0.0.1/tcp/0"]) await node.get_network().listen(multiaddr.Multiaddr("/ip4/127.0.0.1/tcp/0")) node_map[start_node_id] = node floodsub = FloodSub(supported_protocols) floodsub_map[start_node_id] = floodsub pubsub = Pubsub(node, floodsub, start_node_id) pubsub_map[start_node_id] = pubsub # For each neighbor of start_node, create if does not yet exist, # then connect start_node to neighbor for neighbor_id in adj_list[start_node_id]: # Create neighbor if neighbor does not yet exist if neighbor_id not in node_map: neighbor_node = await new_node(transport_opt=["/ip4/127.0.0.1/tcp/0"]) await neighbor_node.get_network().listen(multiaddr.Multiaddr("/ip4/127.0.0.1/tcp/0")) node_map[neighbor_id] = neighbor_node floodsub = FloodSub(supported_protocols) floodsub_map[neighbor_id] = floodsub pubsub = Pubsub(neighbor_node, floodsub, neighbor_id) pubsub_map[neighbor_id] = pubsub # Connect node and neighbor # await connect(node_map[start_node_id], node_map[neighbor_id]) tasks_connect.append(asyncio.ensure_future(connect(node_map[start_node_id], node_map[neighbor_id]))) tasks_connect.append(asyncio.sleep(2)) await asyncio.gather(*tasks_connect) # Allow time for graph creation before continuing # await asyncio.sleep(0.25) # Step 2) Subscribe to topics queues_map = {} topic_map = obj["topic_map"] tasks_topic = [] tasks_topic_data = [] for topic in topic_map: for node_id in topic_map[topic]: """ # Subscribe node to topic q = await pubsub_map[node_id].subscribe(topic) # Create topic-queue map for node_id if one does not yet exist if node_id not in queues_map: queues_map[node_id] = {} # Store queue in topic-queue map for node queues_map[node_id][topic] = q """ tasks_topic.append(asyncio.ensure_future(pubsub_map[node_id].subscribe(topic))) tasks_topic_data.append((node_id, topic)) tasks_topic.append(asyncio.sleep(2)) # Gather is like Promise.all responses = await asyncio.gather(*tasks_topic, return_exceptions=True) for i in range(len(responses) - 1): q = responses[i] node_id, topic = tasks_topic_data[i] if node_id not in queues_map: queues_map[node_id] = {} # Store queue in topic-queue map for node queues_map[node_id][topic] = q # Allow time for subscribing before continuing # await asyncio.sleep(0.01) # Step 3) Publish messages topics_in_msgs_ordered = [] messages = obj["messages"] tasks_publish = [] for msg in messages: topics = msg["topics"] data = msg["data"] node_id = msg["node_id"] # Get actual id for sender node (not the id from the test obj) actual_node_id = str(node_map[node_id].get_id()) # Create correctly formatted message msg_talk = generate_RPC_packet(actual_node_id, topics, data, generate_message_id()) # Publish message # await floodsub_map[node_id].publish(actual_node_id, msg_talk.to_str()) tasks_publish.append(asyncio.ensure_future(floodsub_map[node_id].publish(\ actual_node_id, msg_talk.SerializeToString()))) # For each topic in topics, add topic, msg_talk tuple to ordered test list # TODO: Update message sender to be correct message sender before # adding msg_talk to this list for topic in topics: topics_in_msgs_ordered.append((topic, msg_talk)) # Allow time for publishing before continuing # await asyncio.sleep(0.4) tasks_publish.append(asyncio.sleep(2)) await asyncio.gather(*tasks_publish) # Step 4) Check that all messages were received correctly. # TODO: Check message sender too for i in range(len(topics_in_msgs_ordered)): topic, actual_msg = topics_in_msgs_ordered[i] for node_id in topic_map[topic]: # Get message from subscription queue msg_on_node_str = await queues_map[node_id][topic].get() assert actual_msg.publish[0].SerializeToString() == msg_on_node_str.SerializeToString() # Success, terminate pending tasks. await cleanup() # @pytest.mark.asyncio # async def test_simple_two_nodes_test_obj(): # test_obj = { # "supported_protocols": ["/floodsub/1.0.0"], # "adj_list": { # "A": ["B"], # "B": ["A"] # }, # "topic_map": { # "topic1": ["B"] # }, # "messages": [ # { # "topics": ["topic1"], # "data": "foo", # "node_id": "A" # } # ] # } # await perform_test_from_obj(test_obj) def generate_random_topology(num_nodes, topic_density, num_topics, max_nodes_per_topic, max_msgs_per_topic): nodes = range(num_nodes) # Create a separate graph for each topic topic_graphs = {} for topic in range(num_topics): # TODO: Pick random num of nodes to be in topic (at least 1) num_nodes_in_topic = max_nodes_per_topic nodes_in_topic = random.sample(nodes, num_nodes_in_topic) print("***Nodes in topic***") print(num_nodes_in_topic) print(nodes_in_topic) # Create initial graph by connecting each node to its previous node # This ensures the graph is connected graph = {} graph[nodes_in_topic[0]] = [] max_num_edges = num_nodes_in_topic * (num_nodes_in_topic - 1) / 2 num_edges = 1 for i in range(1, len(nodes_in_topic)): prev = nodes_in_topic[i - 1] curr = nodes_in_topic[i] graph[curr] = [prev] graph[prev].append(curr) num_edges += 1 # Add random edges until topic density is hit while num_edges / max_num_edges < topic_density: selected_nodes = random.sample(nodes_in_topic, 2) # Only add the nodes as neighbors if they are not already neighbors if selected_nodes[0] not in graph[selected_nodes[1]]: graph[selected_nodes[0]].append(selected_nodes[1]) graph[selected_nodes[1]].append(selected_nodes[0]) num_edges += 1 topic_graphs[topic] = graph print(graph) # Generate network graph from union of topic graphs network_graph = {} for topic in topic_graphs: graph = topic_graphs[topic] for node in graph: # Add node if not in network graph if node not in network_graph: network_graph[node] = [] for neighbor in graph[node]: # Add neighbor if not in network graph if neighbor not in network_graph: network_graph[neighbor] = [] # Add edge if not in network graph if neighbor not in network_graph[node]: network_graph[node].append(neighbor) network_graph[neighbor].append(node) def test_simple_random(): num_nodes = 4 topic_density = 0.5 num_topics = 2 max_nodes_per_topic = 4 max_msgs_per_topic = 1 topology = generate_random_topology(num_nodes, topic_density, num_topics,\ max_nodes_per_topic, max_msgs_per_topic) print("TOPOLOGY") print(topology)