import asyncio import multiaddr import pytest import random import pprint from pyvis.network import Network from tests.utils import cleanup from libp2p import new_node from libp2p.peer.peerinfo import info_from_p2p_addr from libp2p.pubsub.pb import rpc_pb2 from libp2p.pubsub.pubsub import Pubsub from libp2p.pubsub.floodsub import FloodSub from utils import generate_message_id, generate_RPC_packet # pylint: disable=too-many-locals async def connect(node1, node2): """ Connect node1 to node2 """ addr = node2.get_addrs()[0] info = info_from_p2p_addr(addr) await node1.connect(info) async def perform_test_from_obj(obj,timeout_len=2): """ Perform a floodsub test from a test obj. test obj are composed as follows: { "supported_protocols": ["supported/protocol/1.0.0",...], "adj_list": { "node1": ["neighbor1_of_node1", "neighbor2_of_node1", ...], "node2": ["neighbor1_of_node2", "neighbor2_of_node2", ...], ... }, "topic_map": { "topic1": ["node1_subscribed_to_topic1", "node2_subscribed_to_topic1", ...] }, "messages": [ { "topics": ["topic1_for_message", "topic2_for_message", ...], "data": "some contents of the message (newlines are not supported)", "node_id": "message sender node id" }, ... ] } NOTE: In adj_list, for any neighbors A and B, only list B as a neighbor of A or B as a neighbor of A once. Do NOT list both A: ["B"] and B:["A"] as the behavior is undefined (even if it may work) """ # Step 1) Create graph adj_list = obj["adj_list"] node_map = {} floodsub_map = {} pubsub_map = {} supported_protocols = obj["supported_protocols"] tasks_connect = [] for start_node_id in adj_list: # Create node if node does not yet exist if start_node_id not in node_map: node = await new_node(transport_opt=["/ip4/127.0.0.1/tcp/0"]) await node.get_network().listen(multiaddr.Multiaddr("/ip4/127.0.0.1/tcp/0")) node_map[start_node_id] = node floodsub = FloodSub(supported_protocols) floodsub_map[start_node_id] = floodsub pubsub = Pubsub(node, floodsub, start_node_id) pubsub_map[start_node_id] = pubsub # For each neighbor of start_node, create if does not yet exist, # then connect start_node to neighbor for neighbor_id in adj_list[start_node_id]: # Create neighbor if neighbor does not yet exist if neighbor_id not in node_map: neighbor_node = await new_node(transport_opt=["/ip4/127.0.0.1/tcp/0"]) await neighbor_node.get_network().listen(multiaddr.Multiaddr("/ip4/127.0.0.1/tcp/0")) node_map[neighbor_id] = neighbor_node floodsub = FloodSub(supported_protocols) floodsub_map[neighbor_id] = floodsub pubsub = Pubsub(neighbor_node, floodsub, neighbor_id) pubsub_map[neighbor_id] = pubsub # Connect node and neighbor # await connect(node_map[start_node_id], node_map[neighbor_id]) tasks_connect.append(asyncio.ensure_future(connect(node_map[start_node_id], node_map[neighbor_id]))) tasks_connect.append(asyncio.sleep(2)) await asyncio.gather(*tasks_connect) # Allow time for graph creation before continuing # await asyncio.sleep(0.25) # Step 2) Subscribe to topics queues_map = {} topic_map = obj["topic_map"] tasks_topic = [] tasks_topic_data = [] for topic in topic_map: for node_id in topic_map[topic]: """ # Subscribe node to topic q = await pubsub_map[node_id].subscribe(topic) # Create topic-queue map for node_id if one does not yet exist if node_id not in queues_map: queues_map[node_id] = {} # Store queue in topic-queue map for node queues_map[node_id][topic] = q """ tasks_topic.append(asyncio.ensure_future(pubsub_map[node_id].subscribe(topic))) tasks_topic_data.append((node_id, topic)) tasks_topic.append(asyncio.sleep(2)) # Gather is like Promise.all responses = await asyncio.gather(*tasks_topic, return_exceptions=True) for i in range(len(responses) - 1): q = responses[i] node_id, topic = tasks_topic_data[i] if node_id not in queues_map: queues_map[node_id] = {} # Store queue in topic-queue map for node queues_map[node_id][topic] = q # Allow time for subscribing before continuing # await asyncio.sleep(0.01) # Step 3) Publish messages topics_in_msgs_ordered = [] messages = obj["messages"] tasks_publish = [] all_actual_msgs = {} for msg in messages: topics = msg["topics"] data = msg["data"] node_id = msg["node_id"] # Get actual id for sender node (not the id from the test obj) actual_node_id = str(node_map[node_id].get_id()) # Create correctly formatted message msg_talk = generate_RPC_packet(actual_node_id, topics, data, generate_message_id()) # Publish message # await floodsub_map[node_id].publish(actual_node_id, msg_talk.to_str()) tasks_publish.append(asyncio.ensure_future(floodsub_map[node_id].publish(\ actual_node_id, msg_talk.SerializeToString()))) # For each topic in topics, add topic, msg_talk tuple to ordered test list # TODO: Update message sender to be correct message sender before # adding msg_talk to this list for topic in topics: if topic in all_actual_msgs: all_actual_msgs[topic].append(msg_talk.publish[0].SerializeToString()) else: all_actual_msgs[topic] = [msg_talk.publish[0].SerializeToString()] # Allow time for publishing before continuing # await asyncio.sleep(0.4) tasks_publish.append(asyncio.sleep(2)) await asyncio.gather(*tasks_publish) # Step 4) Check that all messages were received correctly. for topic in all_actual_msgs: for node_id in topic_map[topic]: all_received_msgs_in_topic = [] # Add all messages to message received list for given node in given topic while (queues_map[node_id][topic].qsize() > 0): # Get message from subscription queue msg_on_node = (await queues_map[node_id][topic].get()).SerializeToString() all_received_msgs_in_topic.append(msg_on_node) # Ensure each message received was the same as one sent for msg_on_node in all_received_msgs_in_topic: assert msg_on_node in all_actual_msgs[topic] # Ensure same number of messages received as sent assert len(all_received_msgs_in_topic) == len(all_actual_msgs[topic]) def generate_test_obj_with_random_params(params): return { "num_nodes": random.randint(params["min_num_nodes"], params["max_num_nodes"]), "density": random.uniform(0.01, params["max_density"]), "num_topics": random.randint(1, params["max_num_topics"]), "max_nodes_per_topic": random.randint(params["min_max_nodes_per_topic"], params["max_max_nodes_per_topic"]), "max_msgs_per_topic": random.randint(params["min_max_msgs_per_topic"], params["max_max_msgs_per_topic"]) } def generate_random_topology(num_nodes, density, num_topics, max_nodes_per_topic, max_msgs_per_topic): # Give nodes string labels so that perform_test_with_obj works correctly # Note: "n" is appended so that visualizations work properly ('00' caused issues) nodes = ["n" + str(i).zfill(2) for i in range(0,num_nodes)] # Adjust max_nodes_per_topic if it exceeds number of nodes max_nodes_per_topic = min(max_nodes_per_topic, num_nodes) # 1) Generate random graph structure # Create initial graph by connecting each node to its previous node # This ensures the graph is connected graph = {} graph[nodes[0]] = [] max_num_edges = num_nodes * (num_nodes - 1) / 2 num_edges = 0 for i in range(1, len(nodes)): prev = nodes[i - 1] curr = nodes[i] graph[curr] = [prev] graph[prev].append(curr) num_edges += 1 # Add random edges until density is hit while num_edges / max_num_edges < density: selected_nodes = random.sample(nodes, 2) # Only add the nodes as neighbors if they are not already neighbors if selected_nodes[0] not in graph[selected_nodes[1]]: graph[selected_nodes[0]].append(selected_nodes[1]) graph[selected_nodes[1]].append(selected_nodes[0]) num_edges += 1 # 2) Pick num_topics random nodes to perform random walks at nodes_to_start_topics_from = random.sample(nodes, num_topics) nodes_in_topic_list = [] for node in nodes_to_start_topics_from: nodes_walked = [] curr = node nodes_walked.append(curr) # TODO: Pick random num of nodes per topic while len(nodes_walked) < max_nodes_per_topic: # Pick a random neighbor of curr to walk to neighbors = graph[curr] rand_num = random.randint(0, len(neighbors) - 1) neighbor = neighbors[rand_num] curr = neighbor if curr not in nodes_walked: nodes_walked.append(curr) nodes_in_topic_list.append(nodes_walked) # 3) Start creating test_obj test_obj = {"supported_protocols": ["/floodsub/1.0.0"]} test_obj["adj_list"] = graph test_obj["topic_map"] = {} for i in range(len(nodes_in_topic_list)): test_obj["topic_map"][str(i)] = nodes_in_topic_list[i] # 4) Finish creating test_obj by adding messages at random start nodes in each topic test_obj["messages"] = [] for i in range(len(nodes_in_topic_list)): nodes_in_topic = nodes_in_topic_list[i] rand_num = random.randint(0, len(nodes_in_topic) - 1) start_node = nodes_in_topic[rand_num] for j in range(max_msgs_per_topic): test_obj["messages"].append({ "topics": [str(i)], "data": str(random.randint(0, 100000)), "node_id": str(start_node) }) # 5) Return completed test_obj return test_obj def create_graph(test_obj): net = Network() net.barnes_hut() adj_list = test_obj["adj_list"] # print(list(adj_list.keys())) nodes_to_add = list(adj_list.keys()) net.add_nodes(nodes_to_add) for node in adj_list: neighbors = adj_list[node] for neighbor in neighbors: net.add_edge(node, neighbor) net.show("random_topology.html") @pytest.mark.asyncio async def test_simple_random(): num_nodes = 5 density = 1 num_topics = 2 max_nodes_per_topic = 5 max_msgs_per_topic = 5 print("Generating random topology") topology_test_obj = generate_random_topology(num_nodes, density, num_topics,\ max_nodes_per_topic, max_msgs_per_topic) print("*****Topology Summary*****") print("# nodes: " + str(num_nodes)) print("Density: " + str(density)) print("# topics: " + str(num_topics)) print("Nodes per topic: " + str(max_nodes_per_topic)) print("Msgs per topic: " + str(max_msgs_per_topic)) print("**************************") print("Performing Test") await perform_test_from_obj(topology_test_obj, timeout_len=20) print("Test Completed") print("Generating Graph") create_graph(topology_test_obj) print("Graph Generated") # Success, terminate pending tasks. await cleanup() @pytest.mark.asyncio async def test_random_10(): min_num_nodes = 8 max_num_nodes = 10 max_density = 0.4 max_num_topics = 5 min_max_nodes_per_topic = 10 max_max_nodes_per_topic = 20 min_max_msgs_per_topic = 10 max_max_msgs_per_topic = 20 num_random_tests = 10 summaries = [] params_to_generate_random_params = { "min_num_nodes": min_num_nodes, "max_num_nodes": max_num_nodes, "max_density": max_density, "max_num_topics": max_num_topics, "min_max_nodes_per_topic": min_max_nodes_per_topic, "max_max_nodes_per_topic": max_max_nodes_per_topic, "min_max_msgs_per_topic": min_max_msgs_per_topic, "max_max_msgs_per_topic": max_max_msgs_per_topic } for i in range(0, num_random_tests): random_params = generate_test_obj_with_random_params(params_to_generate_random_params) print("Generating random topology") topology_test_obj = generate_random_topology(random_params["num_nodes"], random_params["density"],\ random_params["num_topics"], random_params["max_nodes_per_topic"], \ random_params["max_msgs_per_topic"]) summary = { "num_nodes": random_params["num_nodes"], "density": random_params["density"], "num_topics": random_params["num_topics"], "nodes_per_topics": random_params["max_nodes_per_topic"], "msgs_per_topics": random_params["max_msgs_per_topic"] } summaries.append(pprint.pformat(summary, indent=4)) print("Performing Test") await perform_test_from_obj(topology_test_obj, timeout_len=30) print("Test Completed") # print("Generating Graph") # create_graph(topology_test_obj) # print("Graph Generated") print("***Test " + str(i + 1) + "/" + str(num_random_tests) + " Completed***") with open('summaries.rand_test', 'a') as out_file: out_file.write(pprint.pformat(summaries, indent=4)) # Success, terminate pending tasks. await cleanup()