Compare commits

...

11 Commits

5 changed files with 406 additions and 11 deletions

View File

@ -78,9 +78,6 @@ class FloodSub(IPubsubRouter):
new_packet = rpc_pb2.RPC()
new_packet.publish.extend([message])
await stream.write(new_packet.SerializeToString())
else:
# Implies publish did not write
print("publish did not write")
def join(self, topic):
"""

View File

@ -60,7 +60,7 @@ class Mplex(IMuxedConn):
# TODO: pass down timeout from user and use that
if stream_id in self.buffers:
try:
data = await asyncio.wait_for(self.buffers[stream_id].get(), timeout=8)
data = await asyncio.wait_for(self.buffers[stream_id].get(), timeout=5000)
return data
except asyncio.TimeoutError:
return None

View File

@ -5,3 +5,4 @@ pytest-asyncio
pylint
grpcio
grpcio-tools
pyvis

View File

@ -175,6 +175,8 @@ async def perform_test_from_obj(obj):
topics_in_msgs_ordered = []
messages = obj["messages"]
tasks_publish = []
all_actual_msgs = {}
for msg in messages:
topics = msg["topics"]
@ -196,7 +198,10 @@ async def perform_test_from_obj(obj):
# TODO: Update message sender to be correct message sender before
# adding msg_talk to this list
for topic in topics:
topics_in_msgs_ordered.append((topic, msg_talk))
if topic in all_actual_msgs:
all_actual_msgs[topic].append(msg_talk.publish[0].SerializeToString())
else:
all_actual_msgs[topic] = [msg_talk.publish[0].SerializeToString()]
# Allow time for publishing before continuing
# await asyncio.sleep(0.4)
@ -204,13 +209,22 @@ async def perform_test_from_obj(obj):
await asyncio.gather(*tasks_publish)
# Step 4) Check that all messages were received correctly.
# TODO: Check message sender too
for i in range(len(topics_in_msgs_ordered)):
topic, actual_msg = topics_in_msgs_ordered[i]
for topic in all_actual_msgs:
for node_id in topic_map[topic]:
# Get message from subscription queue
msg_on_node_str = await queues_map[node_id][topic].get()
assert actual_msg.publish[0].SerializeToString() == msg_on_node_str.SerializeToString()
all_received_msgs_in_topic = []
# Add all messages to message received list for given node in given topic
while (queues_map[node_id][topic].qsize() > 0):
# Get message from subscription queue
msg_on_node = (await queues_map[node_id][topic].get()).SerializeToString()
all_received_msgs_in_topic.append(msg_on_node)
# Ensure each message received was the same as one sent
for msg_on_node in all_received_msgs_in_topic:
assert msg_on_node in all_actual_msgs[topic]
# Ensure same number of messages received as sent
assert len(all_received_msgs_in_topic) == len(all_actual_msgs[topic])
# Success, terminate pending tasks.
await cleanup()

View File

@ -0,0 +1,383 @@
import asyncio
import multiaddr
import pytest
import random
import pprint
from pyvis.network import Network
from tests.utils import cleanup
from libp2p import new_node
from libp2p.peer.peerinfo import info_from_p2p_addr
from libp2p.pubsub.pb import rpc_pb2
from libp2p.pubsub.pubsub import Pubsub
from libp2p.pubsub.floodsub import FloodSub
from utils import generate_message_id, generate_RPC_packet
# pylint: disable=too-many-locals
async def connect(node1, node2):
"""
Connect node1 to node2
"""
addr = node2.get_addrs()[0]
info = info_from_p2p_addr(addr)
await node1.connect(info)
async def perform_test_from_obj(obj,timeout_len=2):
"""
Perform a floodsub test from a test obj.
test obj are composed as follows:
{
"supported_protocols": ["supported/protocol/1.0.0",...],
"adj_list": {
"node1": ["neighbor1_of_node1", "neighbor2_of_node1", ...],
"node2": ["neighbor1_of_node2", "neighbor2_of_node2", ...],
...
},
"topic_map": {
"topic1": ["node1_subscribed_to_topic1", "node2_subscribed_to_topic1", ...]
},
"messages": [
{
"topics": ["topic1_for_message", "topic2_for_message", ...],
"data": "some contents of the message (newlines are not supported)",
"node_id": "message sender node id"
},
...
]
}
NOTE: In adj_list, for any neighbors A and B, only list B as a neighbor of A
or B as a neighbor of A once. Do NOT list both A: ["B"] and B:["A"] as the behavior
is undefined (even if it may work)
"""
# Step 1) Create graph
adj_list = obj["adj_list"]
node_map = {}
floodsub_map = {}
pubsub_map = {}
supported_protocols = obj["supported_protocols"]
tasks_connect = []
for start_node_id in adj_list:
# Create node if node does not yet exist
if start_node_id not in node_map:
node = await new_node(transport_opt=["/ip4/127.0.0.1/tcp/0"])
await node.get_network().listen(multiaddr.Multiaddr("/ip4/127.0.0.1/tcp/0"))
node_map[start_node_id] = node
floodsub = FloodSub(supported_protocols)
floodsub_map[start_node_id] = floodsub
pubsub = Pubsub(node, floodsub, start_node_id)
pubsub_map[start_node_id] = pubsub
# For each neighbor of start_node, create if does not yet exist,
# then connect start_node to neighbor
for neighbor_id in adj_list[start_node_id]:
# Create neighbor if neighbor does not yet exist
if neighbor_id not in node_map:
neighbor_node = await new_node(transport_opt=["/ip4/127.0.0.1/tcp/0"])
await neighbor_node.get_network().listen(multiaddr.Multiaddr("/ip4/127.0.0.1/tcp/0"))
node_map[neighbor_id] = neighbor_node
floodsub = FloodSub(supported_protocols)
floodsub_map[neighbor_id] = floodsub
pubsub = Pubsub(neighbor_node, floodsub, neighbor_id)
pubsub_map[neighbor_id] = pubsub
# Connect node and neighbor
# await connect(node_map[start_node_id], node_map[neighbor_id])
tasks_connect.append(asyncio.ensure_future(connect(node_map[start_node_id], node_map[neighbor_id])))
tasks_connect.append(asyncio.sleep(2))
await asyncio.gather(*tasks_connect)
# Allow time for graph creation before continuing
# await asyncio.sleep(0.25)
# Step 2) Subscribe to topics
queues_map = {}
topic_map = obj["topic_map"]
tasks_topic = []
tasks_topic_data = []
for topic in topic_map:
for node_id in topic_map[topic]:
"""
# Subscribe node to topic
q = await pubsub_map[node_id].subscribe(topic)
# Create topic-queue map for node_id if one does not yet exist
if node_id not in queues_map:
queues_map[node_id] = {}
# Store queue in topic-queue map for node
queues_map[node_id][topic] = q
"""
tasks_topic.append(asyncio.ensure_future(pubsub_map[node_id].subscribe(topic)))
tasks_topic_data.append((node_id, topic))
tasks_topic.append(asyncio.sleep(2))
# Gather is like Promise.all
responses = await asyncio.gather(*tasks_topic, return_exceptions=True)
for i in range(len(responses) - 1):
q = responses[i]
node_id, topic = tasks_topic_data[i]
if node_id not in queues_map:
queues_map[node_id] = {}
# Store queue in topic-queue map for node
queues_map[node_id][topic] = q
# Allow time for subscribing before continuing
# await asyncio.sleep(0.01)
# Step 3) Publish messages
topics_in_msgs_ordered = []
messages = obj["messages"]
tasks_publish = []
all_actual_msgs = {}
for msg in messages:
topics = msg["topics"]
data = msg["data"]
node_id = msg["node_id"]
# Get actual id for sender node (not the id from the test obj)
actual_node_id = str(node_map[node_id].get_id())
# Create correctly formatted message
msg_talk = generate_RPC_packet(actual_node_id, topics, data, generate_message_id())
# Publish message
# await floodsub_map[node_id].publish(actual_node_id, msg_talk.to_str())
tasks_publish.append(asyncio.ensure_future(floodsub_map[node_id].publish(\
actual_node_id, msg_talk.SerializeToString())))
# For each topic in topics, add topic, msg_talk tuple to ordered test list
# TODO: Update message sender to be correct message sender before
# adding msg_talk to this list
for topic in topics:
if topic in all_actual_msgs:
all_actual_msgs[topic].append(msg_talk.publish[0].SerializeToString())
else:
all_actual_msgs[topic] = [msg_talk.publish[0].SerializeToString()]
# Allow time for publishing before continuing
# await asyncio.sleep(0.4)
tasks_publish.append(asyncio.sleep(2))
await asyncio.gather(*tasks_publish)
# Step 4) Check that all messages were received correctly.
for topic in all_actual_msgs:
for node_id in topic_map[topic]:
all_received_msgs_in_topic = []
# Add all messages to message received list for given node in given topic
while (queues_map[node_id][topic].qsize() > 0):
# Get message from subscription queue
msg_on_node = (await queues_map[node_id][topic].get()).SerializeToString()
all_received_msgs_in_topic.append(msg_on_node)
# Ensure each message received was the same as one sent
for msg_on_node in all_received_msgs_in_topic:
assert msg_on_node in all_actual_msgs[topic]
# Ensure same number of messages received as sent
assert len(all_received_msgs_in_topic) == len(all_actual_msgs[topic])
def generate_test_obj_with_random_params(params):
return {
"num_nodes": random.randint(params["min_num_nodes"], params["max_num_nodes"]),
"density": random.uniform(0.01, params["max_density"]),
"num_topics": random.randint(1, params["max_num_topics"]),
"max_nodes_per_topic": random.randint(params["min_max_nodes_per_topic"], params["max_max_nodes_per_topic"]),
"max_msgs_per_topic": random.randint(params["min_max_msgs_per_topic"], params["max_max_msgs_per_topic"])
}
def generate_random_topology(num_nodes, density, num_topics, max_nodes_per_topic, max_msgs_per_topic):
# Give nodes string labels so that perform_test_with_obj works correctly
# Note: "n" is appended so that visualizations work properly ('00' caused issues)
nodes = ["n" + str(i).zfill(2) for i in range(0,num_nodes)]
# Adjust max_nodes_per_topic if it exceeds number of nodes
max_nodes_per_topic = min(max_nodes_per_topic, num_nodes)
# 1) Generate random graph structure
# Create initial graph by connecting each node to its previous node
# This ensures the graph is connected
graph = {}
graph[nodes[0]] = []
max_num_edges = num_nodes * (num_nodes - 1) / 2
num_edges = 0
for i in range(1, len(nodes)):
prev = nodes[i - 1]
curr = nodes[i]
graph[curr] = [prev]
graph[prev].append(curr)
num_edges += 1
# Add random edges until density is hit
while num_edges / max_num_edges < density:
selected_nodes = random.sample(nodes, 2)
# Only add the nodes as neighbors if they are not already neighbors
if selected_nodes[0] not in graph[selected_nodes[1]]:
graph[selected_nodes[0]].append(selected_nodes[1])
graph[selected_nodes[1]].append(selected_nodes[0])
num_edges += 1
# 2) Pick num_topics random nodes to perform random walks at
nodes_to_start_topics_from = random.sample(nodes, num_topics)
nodes_in_topic_list = []
for node in nodes_to_start_topics_from:
nodes_walked = []
curr = node
nodes_walked.append(curr)
# TODO: Pick random num of nodes per topic
while len(nodes_walked) < max_nodes_per_topic:
# Pick a random neighbor of curr to walk to
neighbors = graph[curr]
rand_num = random.randint(0, len(neighbors) - 1)
neighbor = neighbors[rand_num]
curr = neighbor
if curr not in nodes_walked:
nodes_walked.append(curr)
nodes_in_topic_list.append(nodes_walked)
# 3) Start creating test_obj
test_obj = {"supported_protocols": ["/floodsub/1.0.0"]}
test_obj["adj_list"] = graph
test_obj["topic_map"] = {}
for i in range(len(nodes_in_topic_list)):
test_obj["topic_map"][str(i)] = nodes_in_topic_list[i]
# 4) Finish creating test_obj by adding messages at random start nodes in each topic
test_obj["messages"] = []
for i in range(len(nodes_in_topic_list)):
nodes_in_topic = nodes_in_topic_list[i]
rand_num = random.randint(0, len(nodes_in_topic) - 1)
start_node = nodes_in_topic[rand_num]
for j in range(max_msgs_per_topic):
test_obj["messages"].append({
"topics": [str(i)],
"data": str(random.randint(0, 100000)),
"node_id": str(start_node)
})
# 5) Return completed test_obj
return test_obj
def create_graph(test_obj):
net = Network()
net.barnes_hut()
adj_list = test_obj["adj_list"]
# print(list(adj_list.keys()))
nodes_to_add = list(adj_list.keys())
net.add_nodes(nodes_to_add)
for node in adj_list:
neighbors = adj_list[node]
for neighbor in neighbors:
net.add_edge(node, neighbor)
net.show("random_topology.html")
@pytest.mark.asyncio
async def test_simple_random():
num_nodes = 5
density = 1
num_topics = 2
max_nodes_per_topic = 5
max_msgs_per_topic = 5
print("Generating random topology")
topology_test_obj = generate_random_topology(num_nodes, density, num_topics,\
max_nodes_per_topic, max_msgs_per_topic)
print("*****Topology Summary*****")
print("# nodes: " + str(num_nodes))
print("Density: " + str(density))
print("# topics: " + str(num_topics))
print("Nodes per topic: " + str(max_nodes_per_topic))
print("Msgs per topic: " + str(max_msgs_per_topic))
print("**************************")
print("Performing Test")
await perform_test_from_obj(topology_test_obj, timeout_len=20)
print("Test Completed")
print("Generating Graph")
create_graph(topology_test_obj)
print("Graph Generated")
# Success, terminate pending tasks.
await cleanup()
@pytest.mark.asyncio
async def test_random_10():
min_num_nodes = 8
max_num_nodes = 10
max_density = 0.4
max_num_topics = 5
min_max_nodes_per_topic = 10
max_max_nodes_per_topic = 20
min_max_msgs_per_topic = 10
max_max_msgs_per_topic = 20
num_random_tests = 10
summaries = []
params_to_generate_random_params = {
"min_num_nodes": min_num_nodes,
"max_num_nodes": max_num_nodes,
"max_density": max_density,
"max_num_topics": max_num_topics,
"min_max_nodes_per_topic": min_max_nodes_per_topic,
"max_max_nodes_per_topic": max_max_nodes_per_topic,
"min_max_msgs_per_topic": min_max_msgs_per_topic,
"max_max_msgs_per_topic": max_max_msgs_per_topic
}
for i in range(0, num_random_tests):
random_params = generate_test_obj_with_random_params(params_to_generate_random_params)
print("Generating random topology")
topology_test_obj = generate_random_topology(random_params["num_nodes"], random_params["density"],\
random_params["num_topics"], random_params["max_nodes_per_topic"], \
random_params["max_msgs_per_topic"])
summary = {
"num_nodes": random_params["num_nodes"],
"density": random_params["density"],
"num_topics": random_params["num_topics"],
"nodes_per_topics": random_params["max_nodes_per_topic"],
"msgs_per_topics": random_params["max_msgs_per_topic"]
}
summaries.append(pprint.pformat(summary, indent=4))
print("Performing Test")
await perform_test_from_obj(topology_test_obj, timeout_len=30)
print("Test Completed")
# print("Generating Graph")
# create_graph(topology_test_obj)
# print("Graph Generated")
print("***Test " + str(i + 1) + "/" + str(num_random_tests) + " Completed***")
with open('summaries.rand_test', 'a') as out_file:
out_file.write(pprint.pformat(summaries, indent=4))
# Success, terminate pending tasks.
await cleanup()