interactive-coding-challenges/recursion_dynamic/knapsack_01/knapsack_challenge.ipynb
2018-04-08 20:22:14 -04:00

229 lines
6.2 KiB
Python

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Challenge Notebook"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Problem: Given a knapsack with a total weight capacity and a list of items with weight w(i) and value v(i), determine which items to select to maximize total value.\n",
"\n",
"* [Constraints](#Constraints)\n",
"* [Test Cases](#Test-Cases)\n",
"* [Algorithm](#Algorithm)\n",
"* [Code](#Code)\n",
"* [Unit Test](#Unit-Test)\n",
"* [Solution Notebook](#Solution-Notebook)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Constraints\n",
"\n",
"* Can we replace the items once they are placed in the knapsack?\n",
" * No, this is the 0/1 knapsack problem\n",
"* Can we split an item?\n",
" * No\n",
"* Can we get an input item with weight of 0 or value of 0?\n",
" * No\n",
"* Can we assume the inputs are valid?\n",
" * No\n",
"* Are the inputs in sorted order by val/weight?\n",
" * Yes, if not we'd need to sort them first\n",
"* Can we assume this fits memory?\n",
" * Yes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Cases\n",
"\n",
"* items or total weight is None -> Exception\n",
"* items or total weight is 0 -> 0\n",
"* General case\n",
"\n",
"<pre>\n",
"total_weight = 8\n",
"items\n",
" v | w\n",
" 0 | 0\n",
"a 2 | 2\n",
"b 4 | 2\n",
"c 6 | 4\n",
"d 9 | 5\n",
"\n",
"max value = 13\n",
"items\n",
" v | w\n",
"b 4 | 2\n",
"d 9 | 5 \n",
"</pre>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Algorithm\n",
"\n",
"Refer to the [Solution Notebook](http://nbviewer.jupyter.org/github/donnemartin/interactive-coding-challenges/blob/master/recursion_dynamic/knapsack_01/knapsack_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Code"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"class Item(object):\n",
"\n",
" def __init__(self, label, value, weight):\n",
" self.label = label\n",
" self.value = value\n",
" self.weight = weight\n",
"\n",
" def __repr__(self):\n",
" return self.label + ' v:' + str(self.value) + ' w:' + str(self.weight)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class Knapsack(object):\n",
"\n",
" def fill_knapsack(self, input_items, total_weight):\n",
" # TODO: Implement me\n",
" pass"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Unit Test"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**The following unit test is expected to fail until you solve the challenge.**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# %load test_knapsack.py\n",
"from nose.tools import assert_equal, assert_raises\n",
"\n",
"\n",
"class TestKnapsack(object):\n",
"\n",
" def test_knapsack_bottom_up(self):\n",
" knapsack = Knapsack()\n",
" assert_raises(TypeError, knapsack.fill_knapsack, None, None)\n",
" assert_equal(knapsack.fill_knapsack(0, 0), 0)\n",
" items = []\n",
" items.append(Item(label='a', value=2, weight=2))\n",
" items.append(Item(label='b', value=4, weight=2))\n",
" items.append(Item(label='c', value=6, weight=4))\n",
" items.append(Item(label='d', value=9, weight=5))\n",
" total_weight = 8\n",
" expected_value = 13\n",
" results = knapsack.fill_knapsack(items, total_weight)\n",
" assert_equal(results[0].label, 'd')\n",
" assert_equal(results[1].label, 'b')\n",
" total_value = 0\n",
" for item in results:\n",
" total_value += item.value\n",
" assert_equal(total_value, expected_value)\n",
" print('Success: test_knapsack_bottom_up')\n",
"\n",
" def test_knapsack_top_down(self):\n",
" knapsack = KnapsackTopDown()\n",
" assert_raises(TypeError, knapsack.fill_knapsack, None, None)\n",
" assert_equal(knapsack.fill_knapsack(0, 0), 0)\n",
" items = []\n",
" items.append(Item(label='a', value=2, weight=2))\n",
" items.append(Item(label='b', value=4, weight=2))\n",
" items.append(Item(label='c', value=6, weight=4))\n",
" items.append(Item(label='d', value=9, weight=5))\n",
" total_weight = 8\n",
" expected_value = 13\n",
" assert_equal(knapsack.fill_knapsack(items, total_weight), expected_value)\n",
" print('Success: test_knapsack_top_down')\n",
"\n",
"def main():\n",
" test = TestKnapsack()\n",
" test.test_knapsack_bottom_up()\n",
" test.test_knapsack_top_down()\n",
"\n",
"\n",
"if __name__ == '__main__':\n",
" main()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Solution Notebook\n",
"\n",
"Review the [Solution Notebook]() for a discussion on algorithms and code solutions."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 1
}