interactive-coding-challenges/graphs_trees/graph_path_exists/path_exists_solution.ipynb

251 lines
6.2 KiB
Python

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Solution Notebook"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Problem: Determine whether there is a path between two nodes in a graph.\n",
"\n",
"* [Constraints](#Constraints)\n",
"* [Test Cases](#Test-Cases)\n",
"* [Algorithm](#Algorithm)\n",
"* [Code](#Code)\n",
"* [Unit Test](#Unit-Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Constraints\n",
"\n",
"* Is the graph directed?\n",
" * Yes\n",
"* Can we assume we already have Graph and Node classes?\n",
" * Yes\n",
"* Can we assume this is a connected graph?\n",
" * Yes\n",
"* Can we assume the inputs are valid?\n",
" * Yes\n",
"* Can we assume this fits memory?\n",
" * Yes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Cases\n",
"\n",
"Input:\n",
"* `add_edge(source, destination, weight)`\n",
"\n",
"```\n",
"graph.add_edge(0, 1, 5)\n",
"graph.add_edge(0, 4, 3)\n",
"graph.add_edge(0, 5, 2)\n",
"graph.add_edge(1, 3, 5)\n",
"graph.add_edge(1, 4, 4)\n",
"graph.add_edge(2, 1, 6)\n",
"graph.add_edge(3, 2, 7)\n",
"graph.add_edge(3, 4, 8)\n",
"```\n",
"\n",
"Result:\n",
"* search_path(start=0, end=2) -> True\n",
"* search_path(start=0, end=0) -> True\n",
"* search_path(start=4, end=5) -> False"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Algorithm\n",
"\n",
"To determine if there is a path, we can use either breadth-first or depth-first search.\n",
"\n",
"Breadth-first search can also be used to determine the shortest path. Depth-first search is easier to implement with just straight recursion, but often results in a longer path.\n",
"\n",
"We'll use a breadth-first search approach:\n",
"\n",
"* Add the start node to the queue and mark it as visited\n",
"* If the start node is the end node, return True\n",
"* While the queue is not empty\n",
" * Dequeue a node and visit it\n",
" * If the node is the end node, return True\n",
" * Iterate through each adjacent node\n",
" * If the node has not been visited, add it to the queue and mark it as visited\n",
"* Return False\n",
"\n",
"Complexity:\n",
"* Time: O(V + E), where V = number of vertices and E = number of edges\n",
"* Space: O(V + E)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Code"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%run ../graph/graph.py"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from collections import deque\n",
"\n",
"\n",
"class GraphPathExists(Graph):\n",
"\n",
" def path_exists(self, start, end):\n",
" if start is None or end is None:\n",
" return False\n",
" if start is end:\n",
" return True\n",
" queue = deque()\n",
" queue.append(start)\n",
" start.visit_state = State.visited\n",
" while queue:\n",
" node = queue.popleft()\n",
" if node is end:\n",
" return True\n",
" for adj_node in node.adj_nodes.values():\n",
" if adj_node.visit_state == State.unvisited:\n",
" queue.append(adj_node)\n",
" adj_node.visit_state = State.visited\n",
" return False"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Unit Test"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting test_path_exists.py\n"
]
}
],
"source": [
"%%writefile test_path_exists.py\n",
"from nose.tools import assert_equal\n",
"\n",
"\n",
"class TestPathExists(object):\n",
"\n",
" def test_path_exists(self):\n",
" nodes = []\n",
" graph = GraphPathExists()\n",
" for id in range(0, 6):\n",
" nodes.append(graph.add_node(id))\n",
" graph.add_edge(0, 1, 5)\n",
" graph.add_edge(0, 4, 3)\n",
" graph.add_edge(0, 5, 2)\n",
" graph.add_edge(1, 3, 5)\n",
" graph.add_edge(1, 4, 4)\n",
" graph.add_edge(2, 1, 6)\n",
" graph.add_edge(3, 2, 7)\n",
" graph.add_edge(3, 4, 8)\n",
"\n",
" assert_equal(graph.path_exists(nodes[0], nodes[2]), True)\n",
" assert_equal(graph.path_exists(nodes[0], nodes[0]), True)\n",
" assert_equal(graph.path_exists(nodes[4], nodes[5]), False)\n",
"\n",
" print('Success: test_path_exists')\n",
"\n",
"\n",
"def main():\n",
" test = TestPathExists()\n",
" test.test_path_exists()\n",
"\n",
"\n",
"if __name__ == '__main__':\n",
" main()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Success: test_path_exists\n"
]
}
],
"source": [
"%run -i test_path_exists.py"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}