interactive-coding-challenges/sorting_searching/anagrams/anagrams_solution.ipynb
2017-03-27 05:13:54 -04:00

221 lines
5.1 KiB
Python

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Solution Notebook"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Problem: Sort an array of strings so all anagrams are next to each other.\n",
"\n",
"* [Constraints](#Constraints)\n",
"* [Test Cases](#Test-Cases)\n",
"* [Algorithm](#Algorithm)\n",
"* [Code](#Code)\n",
"* [Unit Test](#Unit-Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Constraints\n",
"\n",
"* Are there any other sorting requirements other than the grouping of anagrams?\n",
" * No\n",
"* Can we assume the inputs are valid?\n",
" * No\n",
"* Can we assume this fits memory?\n",
" * Yes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Cases\n",
"\n",
"* None -> Exception\n",
"* [] -> []\n",
"* General case\n",
" * Input: ['ram', 'act', 'arm', 'bat', 'cat', 'tab']\n",
" * Result: ['arm', 'ram', 'act', 'cat', 'bat', 'tab']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Algorithm\n",
"\n",
"<pre>\n",
"Input: ['ram', 'act', 'arm', 'bat', 'cat', 'tab']\n",
"\n",
"Sort the chars for each item:\n",
"\n",
"'ram' -> 'amr'\n",
"'act' -> 'act'\n",
"'arm' -> 'amr'\n",
"'abt' -> 'bat'\n",
"'cat' -> 'act'\n",
"'abt' -> 'tab'\n",
"\n",
"Use a map of sorted chars to each item to group anagrams:\n",
"\n",
"{\n",
" 'amr': ['ram', 'arm'], \n",
" 'act': ['act', 'cat'], \n",
" 'abt': ['bat', 'tab']\n",
"}\n",
"\n",
"Result: ['arm', 'ram', 'act', 'cat', 'bat', 'tab']\n",
"</pre>\n",
"\n",
"Complexity:\n",
"* Time: O(k * n), due to the modified bucket sort\n",
"* Space: O(n)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Code"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from collections import OrderedDict\n",
"\n",
"\n",
"class Anagram(object):\n",
"\n",
" def group_anagrams(self, items):\n",
" if items is None:\n",
" raise TypeError('items cannot be None')\n",
" if not items:\n",
" return items\n",
" anagram_map = OrderedDict()\n",
" for item in items:\n",
" # Use a tuple, which is hashable and\n",
" # serves as the key in anagram_map\n",
" sorted_chars = tuple(sorted(item))\n",
" if sorted_chars in anagram_map:\n",
" anagram_map[sorted_chars].append(item)\n",
" else:\n",
" anagram_map[sorted_chars] = [item]\n",
" result = []\n",
" for value in anagram_map.values():\n",
" result.extend(value)\n",
" return result"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Unit Test"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting test_anagrams.py\n"
]
}
],
"source": [
"%%writefile test_anagrams.py\n",
"from nose.tools import assert_equal, assert_raises\n",
"\n",
"\n",
"class TestAnagrams(object):\n",
"\n",
" def test_group_anagrams(self):\n",
" anagram = Anagram()\n",
" assert_raises(TypeError, anagram.group_anagrams, None)\n",
" data = ['ram', 'act', 'arm', 'bat', 'cat', 'tab']\n",
" expected = ['ram', 'arm', 'act', 'cat', 'bat', 'tab']\n",
" assert_equal(anagram.group_anagrams(data), expected)\n",
"\n",
" print('Success: test_group_anagrams')\n",
"\n",
"\n",
"def main():\n",
" test = TestAnagrams()\n",
" test.test_group_anagrams()\n",
"\n",
"\n",
"if __name__ == '__main__':\n",
" main()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Success: test_group_anagrams\n"
]
}
],
"source": [
"%run -i test_anagrams.py"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.0"
}
},
"nbformat": 4,
"nbformat_minor": 0
}