285 lines
8.7 KiB
Python

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Challenge Notebook"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Problem: Implement a graph.\n",
"\n",
"* [Constraints](#Constraints)\n",
"* [Test Cases](#Test-Cases)\n",
"* [Algorithm](#Algorithm)\n",
"* [Code](#Code)\n",
"* [Unit Test](#Unit-Test)\n",
"* [Solution Notebook](#Solution-Notebook)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Constraints\n",
"\n",
"* Is the graph directed?\n",
" * Implement both\n",
"* Do the edges have weights?\n",
" * Yes\n",
"* Can the graph have cycles?\n",
" * Yes\n",
"* If we try to add a node that already exists, do we just do nothing?\n",
" * Yes\n",
"* If we try to delete a node that doesn't exist, do we just do nothing?\n",
" * Yes\n",
"* Can we assume this is a connected graph?\n",
" * Yes\n",
"* Can we assume the inputs are valid?\n",
" * Yes\n",
"* Can we assume this fits memory?\n",
" * Yes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Cases\n",
"\n",
"Input:\n",
"* `add_edge(source, destination, weight)`\n",
"\n",
"```\n",
"graph.add_edge(0, 1, 5)\n",
"graph.add_edge(0, 5, 2)\n",
"graph.add_edge(1, 2, 3)\n",
"graph.add_edge(2, 3, 4)\n",
"graph.add_edge(3, 4, 5)\n",
"graph.add_edge(3, 5, 6)\n",
"graph.add_edge(4, 0, 7)\n",
"graph.add_edge(5, 4, 8)\n",
"graph.add_edge(5, 2, 9)\n",
"```\n",
"\n",
"Result:\n",
"* `source` and `destination` nodes within `graph` are connected with specified `weight`.\n",
"\n",
"Note: \n",
"* The Graph class will be used as a building block for more complex graph challenges."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Algorithm\n",
"\n",
"Refer to the [Solution Notebook](http://nbviewer.jupyter.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph/graph_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Code"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from enum import Enum # Python 2 users: Run pip install enum34\n",
"\n",
"\n",
"class State(Enum):\n",
"\n",
" unvisited = 0\n",
" visiting = 1\n",
" visited = 2\n",
"\n",
"\n",
"class Node:\n",
"\n",
" def __init__(self, key):\n",
" self.key = key\n",
" self.visit_state = State.unvisited\n",
" self.incoming_edges = 0\n",
" self.adj_nodes = {} # Key = key, val = Node\n",
" self.adj_weights = {} # Key = key, val = weight\n",
"\n",
" def __repr__(self):\n",
" return str(self.key)\n",
"\n",
" def __lt__(self, other):\n",
" return self.key < other.key\n",
"\n",
" def add_neighbor(self, neighbor, weight=0):\n",
" # TODO: Implement me\n",
" pass\n",
"\n",
" def remove_neighbor(self, neighbor):\n",
" # TODO: Implement me\n",
" pass\n",
"\n",
"\n",
"class Graph:\n",
"\n",
" def __init__(self):\n",
" self.nodes = {} # Key = key, val = Node\n",
"\n",
" def add_node(self, id):\n",
" # TODO: Implement me\n",
" pass\n",
"\n",
" def add_edge(self, source, dest, weight=0):\n",
" # TODO: Implement me\n",
" pass\n",
"\n",
" def add_undirected_edge(self, source, dest, weight=0):\n",
" # TODO: Implement me\n",
" pass"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Unit Test"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**The following unit test is expected to fail until you solve the challenge.**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# %load test_graph.py\n",
"import unittest\n",
"\n",
"\n",
"class TestGraph(unittest.TestCase):\n",
"\n",
" def create_graph(self):\n",
" graph = Graph()\n",
" for key in range(0, 6):\n",
" graph.add_node(key)\n",
" return graph\n",
"\n",
" def test_graph(self):\n",
" graph = self.create_graph()\n",
" graph.add_edge(0, 1, weight=5)\n",
" graph.add_edge(0, 5, weight=2)\n",
" graph.add_edge(1, 2, weight=3)\n",
" graph.add_edge(2, 3, weight=4)\n",
" graph.add_edge(3, 4, weight=5)\n",
" graph.add_edge(3, 5, weight=6)\n",
" graph.add_edge(4, 0, weight=7)\n",
" graph.add_edge(5, 4, weight=8)\n",
" graph.add_edge(5, 2, weight=9)\n",
"\n",
" self.assertEqual(graph.nodes[0].adj_weights[graph.nodes[1].key], 5)\n",
" self.assertEqual(graph.nodes[0].adj_weights[graph.nodes[5].key], 2)\n",
" self.assertEqual(graph.nodes[1].adj_weights[graph.nodes[2].key], 3)\n",
" self.assertEqual(graph.nodes[2].adj_weights[graph.nodes[3].key], 4)\n",
" self.assertEqual(graph.nodes[3].adj_weights[graph.nodes[4].key], 5)\n",
" self.assertEqual(graph.nodes[3].adj_weights[graph.nodes[5].key], 6)\n",
" self.assertEqual(graph.nodes[4].adj_weights[graph.nodes[0].key], 7)\n",
" self.assertEqual(graph.nodes[5].adj_weights[graph.nodes[4].key], 8)\n",
" self.assertEqual(graph.nodes[5].adj_weights[graph.nodes[2].key], 9)\n",
"\n",
" self.assertEqual(graph.nodes[0].incoming_edges, 1)\n",
" self.assertEqual(graph.nodes[1].incoming_edges, 1)\n",
" self.assertEqual(graph.nodes[2].incoming_edges, 2)\n",
" self.assertEqual(graph.nodes[3].incoming_edges, 1)\n",
" self.assertEqual(graph.nodes[4].incoming_edges, 2)\n",
" self.assertEqual(graph.nodes[5].incoming_edges, 2)\n",
"\n",
" graph.nodes[0].remove_neighbor(graph.nodes[1])\n",
" self.assertEqual(graph.nodes[1].incoming_edges, 0)\n",
" graph.nodes[3].remove_neighbor(graph.nodes[4])\n",
" self.assertEqual(graph.nodes[4].incoming_edges, 1)\n",
"\n",
" self.assertEqual(graph.nodes[0] < graph.nodes[1], True)\n",
"\n",
" print('Success: test_graph')\n",
"\n",
" def test_graph_undirected(self):\n",
" graph = self.create_graph()\n",
" graph.add_undirected_edge(0, 1, weight=5)\n",
" graph.add_undirected_edge(0, 5, weight=2)\n",
" graph.add_undirected_edge(1, 2, weight=3)\n",
"\n",
" self.assertEqual(graph.nodes[0].adj_weights[graph.nodes[1].key], 5)\n",
" self.assertEqual(graph.nodes[1].adj_weights[graph.nodes[0].key], 5)\n",
" self.assertEqual(graph.nodes[0].adj_weights[graph.nodes[5].key], 2)\n",
" self.assertEqual(graph.nodes[5].adj_weights[graph.nodes[0].key], 2)\n",
" self.assertEqual(graph.nodes[1].adj_weights[graph.nodes[2].key], 3)\n",
" self.assertEqual(graph.nodes[2].adj_weights[graph.nodes[1].key], 3)\n",
"\n",
" print('Success: test_graph_undirected')\n",
"\n",
"\n",
"def main():\n",
" test = TestGraph()\n",
" test.test_graph()\n",
" test.test_graph_undirected()\n",
"\n",
"\n",
"if __name__ == '__main__':\n",
" main()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Solution Notebook\n",
"\n",
"Review the [Solution Notebook](https://github.com/donnemartin/interactive-coding-challenges/graphs_trees/graphs/graph_solution.ipynb) for a discussion on algorithms and code solutions."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.2"
}
},
"nbformat": 4,
"nbformat_minor": 1
}