mirror of
https://github.com/donnemartin/interactive-coding-challenges.git
synced 2024-03-22 13:11:13 +08:00
233 lines
6.2 KiB
Python
233 lines
6.2 KiB
Python
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Challenge Notebook"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Problem: Given a knapsack with a total weight capacity and a list of items with weight w(i) and value v(i), determine which items to select to maximize total value.\n",
|
|
"\n",
|
|
"* [Constraints](#Constraints)\n",
|
|
"* [Test Cases](#Test-Cases)\n",
|
|
"* [Algorithm](#Algorithm)\n",
|
|
"* [Code](#Code)\n",
|
|
"* [Unit Test](#Unit-Test)\n",
|
|
"* [Solution Notebook](#Solution-Notebook)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Constraints\n",
|
|
"\n",
|
|
"* Can we replace the items once they are placed in the knapsack?\n",
|
|
" * No, this is the 0/1 knapsack problem\n",
|
|
"* Can we split an item?\n",
|
|
" * No\n",
|
|
"* Can we get an input item with weight of 0 or value of 0?\n",
|
|
" * No\n",
|
|
"* Can we assume the inputs are valid?\n",
|
|
" * No\n",
|
|
"* Are the inputs in sorted order by val/weight?\n",
|
|
" * Yes, if not we'd need to sort them first\n",
|
|
"* Can we assume this fits memory?\n",
|
|
" * Yes"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Test Cases\n",
|
|
"\n",
|
|
"* items or total weight is None -> Exception\n",
|
|
"* items or total weight is 0 -> 0\n",
|
|
"* General case\n",
|
|
"\n",
|
|
"<pre>\n",
|
|
"total_weight = 8\n",
|
|
"items\n",
|
|
" v | w\n",
|
|
" 0 | 0\n",
|
|
"a 2 | 2\n",
|
|
"b 4 | 2\n",
|
|
"c 6 | 4\n",
|
|
"d 9 | 5\n",
|
|
"\n",
|
|
"max value = 13\n",
|
|
"items\n",
|
|
" v | w\n",
|
|
"b 4 | 2\n",
|
|
"d 9 | 5 \n",
|
|
"</pre>"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Algorithm\n",
|
|
"\n",
|
|
"Refer to the [Solution Notebook](). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Code"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"class Item(object):\n",
|
|
"\n",
|
|
" def __init__(self, label, value, weight):\n",
|
|
" self.label = label\n",
|
|
" self.value = value\n",
|
|
" self.weight = weight\n",
|
|
"\n",
|
|
" def __repr__(self):\n",
|
|
" return self.label + ' v:' + str(self.value) + ' w:' + str(self.weight)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"class Knapsack(object):\n",
|
|
"\n",
|
|
" def fill_knapsack(self, input_items, total_weight):\n",
|
|
" # TODO: Implement me\n",
|
|
" pass"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Unit Test"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"**The following unit test is expected to fail until you solve the challenge.**"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# %load test_knapsack.py\n",
|
|
"from nose.tools import assert_equal, assert_raises\n",
|
|
"\n",
|
|
"\n",
|
|
"class TestKnapsack(object):\n",
|
|
"\n",
|
|
" def test_knapsack_bottom_up(self):\n",
|
|
" knapsack = Knapsack()\n",
|
|
" assert_raises(TypeError, knapsack.fill_knapsack, None, None)\n",
|
|
" assert_equal(knapsack.fill_knapsack(0, 0), 0)\n",
|
|
" items = []\n",
|
|
" items.append(Item(label='a', value=2, weight=2))\n",
|
|
" items.append(Item(label='b', value=4, weight=2))\n",
|
|
" items.append(Item(label='c', value=6, weight=4))\n",
|
|
" items.append(Item(label='d', value=9, weight=5))\n",
|
|
" total_weight = 8\n",
|
|
" expected_value = 13\n",
|
|
" results = knapsack.fill_knapsack(items, total_weight)\n",
|
|
" assert_equal(results[0].label, 'd')\n",
|
|
" assert_equal(results[1].label, 'b')\n",
|
|
" total_value = 0\n",
|
|
" for item in results:\n",
|
|
" total_value += item.value\n",
|
|
" assert_equal(total_value, expected_value)\n",
|
|
" print('Success: test_knapsack_bottom_up')\n",
|
|
"\n",
|
|
" def test_knapsack_top_down(self):\n",
|
|
" knapsack = KnapsackTopDown()\n",
|
|
" assert_raises(TypeError, knapsack.fill_knapsack, None, None)\n",
|
|
" assert_equal(knapsack.fill_knapsack(0, 0), 0)\n",
|
|
" items = []\n",
|
|
" items.append(Item(label='a', value=2, weight=2))\n",
|
|
" items.append(Item(label='b', value=4, weight=2))\n",
|
|
" items.append(Item(label='c', value=6, weight=4))\n",
|
|
" items.append(Item(label='d', value=9, weight=5))\n",
|
|
" total_weight = 8\n",
|
|
" expected_value = 13\n",
|
|
" assert_equal(knapsack.fill_knapsack(items, total_weight), expected_value)\n",
|
|
" print('Success: test_knapsack_top_down')\n",
|
|
"\n",
|
|
"def main():\n",
|
|
" test = TestKnapsack()\n",
|
|
" test.test_knapsack_bottom_up()\n",
|
|
" test.test_knapsack_top_down()\n",
|
|
"\n",
|
|
"\n",
|
|
"if __name__ == '__main__':\n",
|
|
" main()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Solution Notebook\n",
|
|
"\n",
|
|
"Review the [Solution Notebook]() for a discussion on algorithms and code solutions."
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.5.0"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 0
|
|
}
|