interactive-coding-challenges/recursion_dynamic/power_set/power_set_challenge.ipynb
2017-03-27 05:20:27 -04:00

203 lines
5.0 KiB
Python

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Challenge Notebook"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Problem: Return all subsets of a set.\n",
"\n",
"* [Constraints](#Constraints)\n",
"* [Test Cases](#Test-Cases)\n",
"* [Algorithm](#Algorithm)\n",
"* [Code](#Code)\n",
"* [Unit Test](#Unit-Test)\n",
"* [Solution Notebook](#Solution-Notebook)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Constraints\n",
"\n",
"* Should the resulting subsets be unique?\n",
" * Yes, treat 'ab' and 'bc' as the same\n",
"* Is the empty set included as a subset?\n",
" * Yes\n",
"* Are the inputs unique?\n",
" * No\n",
"* Can we assume the inputs are valid?\n",
" * No\n",
"* Can we assume this fits memory?\n",
" * Yes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Cases\n",
"\n",
"<pre>\n",
"* None -> None\n",
"* [] -> [[]]\n",
"* ['a'] -> [[], \n",
" ['a']]\n",
"* ['a', 'b'] -> [[], \n",
" ['a'], \n",
" ['b'], \n",
" ['a', 'b']]\n",
"* ['a', 'b', 'c'] -> [[], \n",
" ['a'], \n",
" ['b'], \n",
" ['c'],\n",
" ['a', 'b'], \n",
" ['a', 'c'], \n",
" ['b', 'c'],\n",
" ['a', 'b', 'c']]\n",
"</pre>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Algorithm\n",
"\n",
"Refer to the [Solution Notebook](). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Code"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"class Sets(object):\n",
"\n",
" def find_power_set_recursive(self, input_set):\n",
" # TODO: Implement me\n",
" pass\n",
"\n",
" def find_power_set_iterative(self, input_set):\n",
" # TODO: Implement me\n",
" pass"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Unit Test"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**The following unit test is expected to fail until you solve the challenge.**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# %load test_power_set.py\n",
"from nose.tools import assert_equal\n",
"\n",
"\n",
"class TestPowerSet(object):\n",
"\n",
" def test_power_set(self):\n",
" input_set = []\n",
" expected = [[]]\n",
" self.run_test(input_set, expected)\n",
" input_set = ['a']\n",
" expected = [['a'], []]\n",
" self.run_test(input_set, expected)\n",
" input_set = ['a', 'b']\n",
" expected = [['a'], ['a', 'b'], ['b'], []]\n",
" self.run_test(input_set, expected)\n",
" input_set = ['a', 'b', 'c']\n",
" expected = [['a'], ['a', 'b'], ['b'], ['a', 'c'], \n",
" ['a', 'b', 'c'], ['b', 'c'], ['c'], []]\n",
" self.run_test(input_set, expected)\n",
" print('Success: test_power_set')\n",
"\n",
" def run_test(self, input_set, expected):\n",
" combinatoric = Combinatoric()\n",
" result = combinatoric.find_power_set_recursive(input_set)\n",
" assert_equal(result, expected)\n",
" result = combinatoric.find_power_set_iterative(input_set)\n",
" assert_equal(result, expected)\n",
"\n",
"\n",
"def main():\n",
" test = TestPowerSet()\n",
" test.test_power_set()\n",
"\n",
"\n",
"if __name__ == '__main__':\n",
" main()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Solution Notebook\n",
"\n",
"Review the [Solution Notebook]() for a discussion on algorithms and code solutions."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.0"
}
},
"nbformat": 4,
"nbformat_minor": 0
}