mirror of
https://github.com/donnemartin/interactive-coding-challenges.git
synced 2024-03-22 13:11:13 +08:00
238 lines
5.3 KiB
Python
238 lines
5.3 KiB
Python
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Solution Notebook"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Problem: Implement depth-first search on a graph.\n",
|
|
"\n",
|
|
"* [Constraints](#Constraints)\n",
|
|
"* [Test Cases](#Test-Cases)\n",
|
|
"* [Algorithm](#Algorithm)\n",
|
|
"* [Code](#Code)\n",
|
|
"* [Unit Test](#Unit-Test)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Constraints\n",
|
|
"\n",
|
|
"* Is the graph directed?\n",
|
|
" * Yes\n",
|
|
"* Can we assume we already have Graph and Node classes?\n",
|
|
" * Yes\n",
|
|
"* Can we assume the inputs are valid?\n",
|
|
" * Yes\n",
|
|
"* Can we assume this fits memory?\n",
|
|
" * Yes"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Test Cases\n",
|
|
"\n",
|
|
"Input:\n",
|
|
"* `add_edge(source, destination, weight)`\n",
|
|
"\n",
|
|
"```\n",
|
|
"graph.add_edge(0, 1, 5)\n",
|
|
"graph.add_edge(0, 4, 3)\n",
|
|
"graph.add_edge(0, 5, 2)\n",
|
|
"graph.add_edge(1, 3, 5)\n",
|
|
"graph.add_edge(1, 4, 4)\n",
|
|
"graph.add_edge(2, 1, 6)\n",
|
|
"graph.add_edge(3, 2, 7)\n",
|
|
"graph.add_edge(3, 4, 8)\n",
|
|
"```\n",
|
|
"\n",
|
|
"Result:\n",
|
|
"* Order of nodes visited: [0, 1, 3, 2, 4, 5]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Algorithm\n",
|
|
"\n",
|
|
"If we want to visit every node in a graph, we generally prefer depth-first search since it is simpler (no need to use a queue). For shortest path, we generally use breadth-first search.\n",
|
|
"\n",
|
|
"* Visit the current node and mark it visited\n",
|
|
"* Iterate through each adjacent node\n",
|
|
" * If the node has not been visited, call dfs on it\n",
|
|
"\n",
|
|
"Complexity:\n",
|
|
"* Time: O(V + E), where V = number of vertices and E = number of edges\n",
|
|
"* Space: O(V + E)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Code"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"%run ../graph/graph.py"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"class GraphDfs(Graph):\n",
|
|
"\n",
|
|
" def dfs(self, root, visit_func):\n",
|
|
" if root is None:\n",
|
|
" return\n",
|
|
" visit_func(root)\n",
|
|
" root.visit_state = State.visited\n",
|
|
" for node in root.adj_nodes.values():\n",
|
|
" if node.visit_state == State.unvisited:\n",
|
|
" self.dfs(node, visit_func)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Unit Test"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"%run ../utils/results.py"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Overwriting test_dfs.py\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"%%writefile test_dfs.py\n",
|
|
"from nose.tools import assert_equal\n",
|
|
"\n",
|
|
"\n",
|
|
"class TestDfs(object):\n",
|
|
"\n",
|
|
" def __init__(self):\n",
|
|
" self.results = Results()\n",
|
|
"\n",
|
|
" def test_dfs(self):\n",
|
|
" nodes = []\n",
|
|
" graph = GraphDfs()\n",
|
|
" for id in range(0, 6):\n",
|
|
" nodes.append(graph.add_node(id))\n",
|
|
" graph.add_edge(0, 1, 5)\n",
|
|
" graph.add_edge(0, 4, 3)\n",
|
|
" graph.add_edge(0, 5, 2)\n",
|
|
" graph.add_edge(1, 3, 5)\n",
|
|
" graph.add_edge(1, 4, 4)\n",
|
|
" graph.add_edge(2, 1, 6)\n",
|
|
" graph.add_edge(3, 2, 7)\n",
|
|
" graph.add_edge(3, 4, 8)\n",
|
|
" graph.dfs(nodes[0], self.results.add_result)\n",
|
|
" assert_equal(str(self.results), \"[0, 1, 3, 2, 4, 5]\")\n",
|
|
"\n",
|
|
" print('Success: test_dfs')\n",
|
|
"\n",
|
|
"\n",
|
|
"def main():\n",
|
|
" test = TestDfs()\n",
|
|
" test.test_dfs()\n",
|
|
"\n",
|
|
"\n",
|
|
"if __name__ == '__main__':\n",
|
|
" main()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Success: test_dfs\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"%run -i test_dfs.py"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.5.0"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 0
|
|
}
|