{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Solution Notebook" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem: Given a list of stock prices, find the max profit from 1 buy and 1 sell.\n", "\n", "* [Constraints](#Constraints)\n", "* [Test Cases](#Test-Cases)\n", "* [Algorithm](#Algorithm)\n", "* [Code](#Code)\n", "* [Unit Test](#Unit-Test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Constraints\n", "\n", "* Are all prices positive ints?\n", " * Yes\n", "* Is the output an int?\n", " * Yes\n", "* If profit is negative, do we return the smallest negative loss?\n", " * Yes\n", "* If there are less than two prices, what do we return?\n", " * Exception\n", "* Can we assume the inputs are valid?\n", " * No\n", "* Can we assume this fits memory?\n", " * Yes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Test Cases\n", "\n", "* None -> TypeError\n", "* Zero or one price -> ValueError\n", "* No profit\n", " * [8, 5, 3, 2, 1] -> -1\n", "* General case\n", " * [5, 3, 7, 4, 2, 6, 9] -> 7" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Algorithm\n", "\n", "We'll use a greedy approach and iterate through the prices once.\n", "\n", "* Loop through the prices\n", " * Update current profit (price = min_price)\n", " * Update the min price\n", " * Update the max profit\n", "* Return max profit\n", "\n", "Complexity:\n", "* Time: O(n)\n", "* Space: O(1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Code" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import sys\n", "\n", "\n", "class Solution(object):\n", "\n", " def find_max_profit(self, prices):\n", " if prices is None:\n", " raise TypeError('prices cannot be None')\n", " if len(prices) < 2:\n", " raise ValueError('prices must have at least two values')\n", " min_price = prices.pop(0)\n", " max_profit = prices[0] - min_price\n", " for price in prices:\n", " profit = price - min_price\n", " min_price = min(price, min_price)\n", " max_profit = max(profit, max_profit)\n", " return max_profit" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Unit Test" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Overwriting test_max_profit.py\n" ] } ], "source": [ "%%writefile test_max_profit.py\n", "from nose.tools import assert_equal, assert_raises\n", "\n", "\n", "class TestMaxProfit(object):\n", "\n", " def test_max_profit(self):\n", " solution = Solution()\n", " assert_raises(TypeError, solution.find_max_profit, None)\n", " assert_raises(ValueError, solution.find_max_profit, [])\n", " assert_equal(solution.find_max_profit([8, 5, 3, 2, 1]), -1)\n", " assert_equal(solution.find_max_profit([5, 3, 7, 4, 2, 6, 9]), 7)\n", " print('Success: test_max_profit')\n", "\n", "\n", "def main():\n", " test = TestMaxProfit()\n", " test.test_max_profit()\n", "\n", "\n", "if __name__ == '__main__':\n", " main()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Success: test_max_profit\n" ] } ], "source": [ "%run -i test_max_profit.py" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.0" } }, "nbformat": 4, "nbformat_minor": 0 }