{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Challenge Notebook" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem: Implement a min heap with extract_min and insert methods.\n", "\n", "* [Constraints](#Constraints)\n", "* [Test Cases](#Test-Cases)\n", "* [Algorithm](#Algorithm)\n", "* [Code](#Code)\n", "* [Unit Test](#Unit-Test)\n", "* [Solution Notebook](#Solution-Notebook)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Constraints\n", "\n", "* Can we assume the inputs are ints?\n", " * Yes\n", "* Can we assume this fits memory?\n", " * Yes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Test Cases\n", "\n", "* Extract min of an empty tree\n", "* Extract min general case\n", "* Insert into an empty tree\n", "* Insert general case (left and right insert)\n", "\n", "
\n",
    "          _5_\n",
    "        /     \\\n",
    "       20     15\n",
    "      / \\    /  \\\n",
    "     22  40 25\n",
    "     \n",
    "extract_min(): 5\n",
    "\n",
    "          _15_\n",
    "        /      \\\n",
    "       20      25\n",
    "      / \\     /  \\\n",
    "     22  40 \n",
    "\n",
    "insert(2):\n",
    "\n",
    "          _2_\n",
    "        /     \\\n",
    "       20      5\n",
    "      / \\     / \\\n",
    "     22  40  25  15\n",
    "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Algorithm\n", "\n", "Refer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/min_heap/min_heap_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Code" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "class MinHeap(object):\n", "\n", " def __init__(self):\n", " # TODO: Implement me\n", " pass\n", "\n", " def extract_min(self):\n", " # TODO: Implement me\n", " pass \n", "\n", " def peek_min(self):\n", " # TODO: Implement me\n", " pass\n", "\n", " def insert(self, data):\n", " # TODO: Implement me\n", " pass\n", "\n", " def _bubble_up(self, index):\n", " # TODO: Implement me\n", " pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Unit Test" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**The following unit test is expected to fail until you solve the challenge.**" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# %load test_min_heap.py\n", "from nose.tools import assert_equal\n", "\n", "\n", "class TestMinHeap(object):\n", "\n", " def test_min_heap(self):\n", " heap = MinHeap()\n", " assert_equal(heap.peek_min(), None)\n", " assert_equal(heap.extract_min(), None)\n", " heap.insert(20)\n", " assert_equal(heap.peek_min(), 20)\n", " heap.insert(5)\n", " assert_equal(heap.peek_min(), 5)\n", " heap.insert(15)\n", " heap.insert(22)\n", " heap.insert(40)\n", " heap.insert(5)\n", " assert_equal(heap.peek_min(), 5)\n", " heap.insert(3)\n", " assert_equal(heap.peek_min(), 3)\n", " assert_equal(heap.extract_min(), 3)\n", " assert_equal(heap.peek_min(), 5)\n", " print('Success: test_min_heap')\n", "\n", " \n", "def main():\n", " test = TestMinHeap()\n", " test.test_min_heap()\n", "\n", " \n", "if __name__ == '__main__':\n", " main()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Solution Notebook\n", "\n", "Review the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/min_heap/min_heap_solution.ipynb) for a discussion on algorithms and code solutions." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.0" } }, "nbformat": 4, "nbformat_minor": 0 }