{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Solution Notebook" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem: Given a knapsack with a total weight capacity and a list of items with weight w(i) and value v(i), determine the max total value you can carry.\n", "\n", "* [Constraints](#Constraints)\n", "* [Test Cases](#Test-Cases)\n", "* [Algorithm](#Algorithm)\n", "* [Code](#Code)\n", "* [Unit Test](#Unit-Test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Constraints\n", "\n", "* Can we replace the items once they are placed in the knapsack?\n", " * Yes, this is the unbounded knapsack problem\n", "* Can we split an item?\n", " * No\n", "* Can we get an input item with weight of 0 or value of 0?\n", " * No\n", "* Do we need to return the items that make up the max total value?\n", " * No, just the total value\n", "* Can we assume the inputs are valid?\n", " * No\n", "* Are the inputs in sorted order by val/weight?\n", " * Yes\n", "* Can we assume this fits memory?\n", " * Yes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Test Cases\n", "\n", "* items or total weight is None -> Exception\n", "* items or total weight is 0 -> 0\n", "* General case\n", "\n", "
\n",
    "total_weight = 8\n",
    "items\n",
    "  v | w\n",
    "  0 | 0\n",
    "a 1 | 1\n",
    "b 3 | 2\n",
    "c 7 | 4\n",
    "\n",
    "max value = 14 \n",
    "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Algorithm\n", "\n", "We'll use bottom up dynamic programming to build a table. \n", "\n", "Taking what we learned with the 0/1 knapsack problem, we could solve the problem like the following:\n", "\n", "
\n",
    "\n",
    "v = value\n",
    "w = weight\n",
    "\n",
    "               j              \n",
    "    -------------------------------------------------\n",
    "    | v | w || 0 | 1 | 2 | 3 | 4 | 5 |  6 |  7 |  8  |\n",
    "    -------------------------------------------------\n",
    "    | 0 | 0 || 0 | 0 | 0 | 0 | 0 | 0 |  0 |  0 |  0  |\n",
    "  a | 1 | 1 || 0 | 1 | 2 | 3 | 4 | 5 |  6 |  7 |  8  |\n",
    "i b | 3 | 2 || 0 | 1 | 3 | 4 | 6 | 7 |  9 | 10 | 12  |\n",
    "  c | 7 | 4 || 0 | 1 | 3 | 4 | 7 | 8 | 10 | 11 | 14  |\n",
    "    -------------------------------------------------\n",
    "\n",
    "i = row\n",
    "j = col\n",
    "\n",
    "
\n", "\n", "However, unlike the 0/1 knapsack variant, we don't actually need to keep space of O(n * w), where n is the number of items and w is the total weight. We just need a single array that we update after we process each item:\n", "\n", "
\n",
    "\n",
    "    -------------------------------------------------\n",
    "    | v | w || 0 | 1 | 2 | 3 | 4 | 5 |  6 |  7 |  8  |\n",
    "    -------------------------------------------------\n",
    "\n",
    "    -------------------------------------------------\n",
    "  a | 1 | 1 || 0 | 1 | 2 | 3 | 4 | 5 |  6 |  7 |  8  |\n",
    "    -------------------------------------------------\n",
    "\n",
    "    -------------------------------------------------\n",
    "  b | 3 | 2 || 0 | 1 | 3 | 4 | 6 | 7 |  9 | 10 | 12  |\n",
    "    -------------------------------------------------\n",
    "\n",
    "    -------------------------------------------------\n",
    "  c | 7 | 4 || 0 | 1 | 3 | 4 | 7 | 8 | 10 | 11 | 14  |\n",
    "    -------------------------------------------------\n",
    "\n",
    "if j >= items[i].weight:\n",
    "    T[j] = max(items[i].value + T[j - items[i].weight],\n",
    "               T[j])\n",
    "\n",
    "
\n", "\n", "Complexity:\n", "* Time: O(n * w), where n is the number of items and w is the total weight\n", "* Space: O(w), where w is the total weight" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Code" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Item Class" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class Item(object):\n", "\n", " def __init__(self, label, value, weight):\n", " self.label = label\n", " self.value = value\n", " self.weight = weight\n", "\n", " def __repr__(self):\n", " return self.label + ' v:' + str(self.value) + ' w:' + str(self.weight)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Knapsack Bottom Up" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "class Knapsack(object):\n", "\n", " def fill_knapsack(self, items, total_weight):\n", " if items is None or total_weight is None:\n", " raise TypeError('items or total_weight cannot be None')\n", " if not items or total_weight == 0:\n", " return 0\n", " num_rows = len(items)\n", " num_cols = total_weight + 1\n", " T = [0] * (num_cols)\n", " for i in range(num_rows):\n", " for j in range(num_cols):\n", " if j >= items[i].weight:\n", " T[j] = max(items[i].value + T[j - items[i].weight],\n", " T[j])\n", " return T[-1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Unit Test" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Overwriting test_knapsack_unbounded.py\n" ] } ], "source": [ "%%writefile test_knapsack_unbounded.py\n", "from nose.tools import assert_equal, assert_raises\n", "\n", "\n", "class TestKnapsack(object):\n", "\n", " def test_knapsack(self):\n", " knapsack = Knapsack()\n", " assert_raises(TypeError, knapsack.fill_knapsack, None, None)\n", " assert_equal(knapsack.fill_knapsack(0, 0), 0)\n", " items = []\n", " items.append(Item(label='a', value=1, weight=1))\n", " items.append(Item(label='b', value=3, weight=2))\n", " items.append(Item(label='c', value=7, weight=4))\n", " total_weight = 8\n", " expected_value = 14\n", " results = knapsack.fill_knapsack(items, total_weight)\n", " total_weight = 7\n", " expected_value = 11\n", " results = knapsack.fill_knapsack(items, total_weight)\n", " assert_equal(results, expected_value)\n", " print('Success: test_knapsack')\n", "\n", "def main():\n", " test = TestKnapsack()\n", " test.test_knapsack()\n", "\n", "\n", "if __name__ == '__main__':\n", " main()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Success: test_knapsack\n" ] } ], "source": [ "%run -i test_knapsack_unbounded.py" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }