{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://bit.ly/code-notes)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem: Implement an algorithm to determine if a string has all unique characters\n", "\n", "* [Clarifying Questions](#Clarifying-Questions)\n", "* [Test Cases](#Test-Cases)\n", "* [Algorithm 1: Sets and Length Comparison](#Algorithm-1:-Sets-and-Length-Comparison)\n", "* [Code: Sets and Length Comparison](#Code:-Sets-and-Length-Comparison)\n", "* [Algorithm 2: Hash Map Lookup](#Algorithm-2:-Hash-Map-Lookup)\n", "* [Code: Hash Map Lookup](#Code:-Hash-Map-Lookup)\n", "* [Algorithm 3: In-Place](#Algorithm-3:-In-Place)\n", "* [Code: In-Place](#Code:-In-Place)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Clarifying Questions\n", "* Is the string in ASCII (extended?) or Unicode? \n", " * ASCII extended, which is 256 characters\n", "* Can you use additional data structures? \n", " * Yes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Test Cases\n", "\n", "* '' -> True\n", "* 'foo' -> False\n", "* 'bar' -> True" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Algorithm 1: Sets and Length Comparison\n", "\n", "A set is an unordered collection of unique elements. \n", "\n", "* If the length of the set(string) equals the length of the string\n", " * Return True\n", "* Else\n", " * Return False\n", " \n", "Complexity:\n", "* Time: O(n)\n", "* Space: Additional O(m), where m is the number of unique characters in the set" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Code: Sets and Length Comparison" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def unique_chars(string):\n", " return len(set(string)) == len(string)\n", "\n", "print(unique_chars(''))\n", "print(unique_chars('foo'))\n", "print(unique_chars('bar'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Algorithm 2: Hash Map Lookup\n", "\n", "We'll keep a hash map (set) to keep track of unique characters we encounter. \n", "\n", "Steps:\n", "* Scan each character\n", "* For each character:\n", " * If the character does not exist in a hash map, add the character to a hash map\n", " * Else, return False\n", "* Return True\n", "\n", "Notes:\n", "* We could also use a dictionary, but it seems more logical to use a set as it does not contain duplicate elements\n", "* Since the characters are in ASCII, we could potentially use an array of size 128 (or 256 for extended ASCII)\n", "\n", "Complexity:\n", "* Time: O(n)\n", "* Space: Additional O(m), where m is the number of unique characters in the hash map" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Code: Hash Map Lookup" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def unique_chars_alt(string):\n", " chars_set = set()\n", " for char in string:\n", " if char in chars_set:\n", " return False\n", " else:\n", " chars_set.add(char)\n", " return True" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Algorithm 3: In-Place\n", "\n", "Since we cannot use additional data structures, this will eliminate the fast lookup O(1) time provided by our hash map.\n", "* Scan each character\n", "* For each character:\n", " * Scan all [other] characters in the array\n", " * Exluding the current character from the scan is rather tricky in Python and results in a non-Pythonic solution\n", " * If there is a match, return False\n", "* Return True\n", "\n", "Algorithm Complexity:\n", "* Time: O(n^2)\n", "* Space: In-place" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Code: In-Place" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def unique_chars_alt(string):\n", " for char in string:\n", " if string.count(char) > 1:\n", " return False\n", " return True" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }