{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Challenge Notebook" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem: Implement depth-first search on a graph.\n", "\n", "* [Constraints](#Constraints)\n", "* [Test Cases](#Test-Cases)\n", "* [Algorithm](#Algorithm)\n", "* [Code](#Code)\n", "* [Unit Test](#Unit-Test)\n", "* [Solution Notebook](#Solution-Notebook)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Constraints\n", "\n", "* Is the graph directed?\n", " * Yes\n", "* Can we assume we already have Graph and Node classes?\n", " * Yes\n", "* Can we assume this is a connected graph?\n", " * Yes\n", "* Can we assume the inputs are valid?\n", " * Yes\n", "* Can we assume this fits memory?\n", " * Yes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Test Cases\n", "\n", "Input:\n", "* `add_edge(source, destination, weight)`\n", "\n", "```\n", "graph.add_edge(0, 1, 5)\n", "graph.add_edge(0, 4, 3)\n", "graph.add_edge(0, 5, 2)\n", "graph.add_edge(1, 3, 5)\n", "graph.add_edge(1, 4, 4)\n", "graph.add_edge(2, 1, 6)\n", "graph.add_edge(3, 2, 7)\n", "graph.add_edge(3, 4, 8)\n", "```\n", "\n", "Result:\n", "* Order of nodes visited: [0, 1, 3, 2, 4, 5]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Algorithm\n", "\n", "Refer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph_dfs/dfs_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Code" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%run ../graph/graph.py\n", "%load ../graph/graph.py" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "class GraphDfs(Graph):\n", "\n", " def dfs(self, root, visit_func):\n", " # TODO: Implement me\n", " pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Unit Test" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**The following unit test is expected to fail until you solve the challenge.**" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%run ../utils/results.py" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# %load test_dfs.py\n", "from nose.tools import assert_equal\n", "\n", "\n", "class TestDfs(object):\n", "\n", " def __init__(self):\n", " self.results = Results()\n", "\n", " def test_dfs(self):\n", " nodes = []\n", " graph = GraphDfs()\n", " for id in range(0, 6):\n", " nodes.append(graph.add_node(id))\n", " graph.add_edge(0, 1, 5)\n", " graph.add_edge(0, 4, 3)\n", " graph.add_edge(0, 5, 2)\n", " graph.add_edge(1, 3, 5)\n", " graph.add_edge(1, 4, 4)\n", " graph.add_edge(2, 1, 6)\n", " graph.add_edge(3, 2, 7)\n", " graph.add_edge(3, 4, 8)\n", " graph.dfs(nodes[0], self.results.add_result)\n", " assert_equal(str(self.results), \"[0, 1, 3, 2, 4, 5]\")\n", "\n", " print('Success: test_dfs')\n", "\n", "\n", "def main():\n", " test = TestDfs()\n", " test.test_dfs()\n", "\n", "\n", "if __name__ == '__main__':\n", " main()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Solution Notebook\n", "\n", "Review the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph_dfs/dfs_solution.ipynb) for a discussion on algorithms and code solutions." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }