{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Solution Notebook" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem: Check if a binary tree is balanced.\n", "\n", "* [Constraints](#Constraints)\n", "* [Test Cases](#Test-Cases)\n", "* [Algorithm](#Algorithm)\n", "* [Code](#Code)\n", "* [Unit Test](#Unit-Test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Constraints\n", "\n", "* Is a balanced tree one where the heights of two sub trees of any node doesn't differ by more than 1?\n", " * Yes\n", "* If this is called on a None input, should we raise an exception?\n", " * Yes\n", "* Can we assume we already have a Node class with an insert method?\n", " * Yes\n", "* Can we assume this fits memory?\n", " * Yes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Test Cases\n", "\n", "* None -> No\n", "* 1 -> Yes\n", "* 5, 3, 8, 1, 4 -> Yes\n", "* 5, 3, 8, 9, 10 -> No" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Algorithm\n", "\n", "The algorithm will be similar to where we get the height of a tree as seen in [here](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/tree_height/height_solution.ipynb).\n", "\n", "However, we could check whether the tree is balanced while also checking for the heights.\n", "\n", "* Base case: If the root is None, return 0\n", "* Recursively check whether the left sub tree is balanced, and get its maximum and minimum height\n", "* Recursively Check whether the right sub tree is balanced, and get its maximum and minimum height\n", "* Calculate the maximum height and minimum height of the current tree\n", "* If both sub-trees are balanced, and the maximum and minimum height of the current tree doesn't differ by more than 1, then the current tree is balanced. Otherwise, it is not\n", "* Return whether the current tree is balanced, and the maximum height and minimum height of the current tree\n", " \n", "Complexity:\n", "* Time: O(n)\n", "* Space: O(h), where h is the height of the tree" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Code" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%run ../bst/bst.py" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def _check_balance(root):\n", " if root is None:\n", " return (True, 0, 0)\n", " left_balanced, left_min_h, left_max_h = _check_balance(root.left)\n", " right_balanced, right_min_h, right_max_h = _check_balance(root.right)\n", " min_h = 1 + min(left_min_h, right_min_h)\n", " max_h = 1 + max(left_max_h, right_max_h)\n", " balanced = left_balanced and right_balanced and abs(max_h-min_h) <= 1\n", " return (balanced, min_h, max_h)\n", "\n", "\n", "def check_balance(root):\n", " if root is None:\n", " raise Exception('No root node')\n", " balanced, _, _ = _check_balance(root)\n", " return balanced" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Unit Test" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Overwriting test_check_balance.py\n" ] } ], "source": [ "%%writefile test_check_balance.py\n", "from nose.tools import assert_equal\n", "from nose.tools import raises\n", "\n", "\n", "class TestCheckBalance(object):\n", "\n", " @raises(Exception)\n", " def test_check_balance_empty(self):\n", " check_balance(None)\n", "\n", " def test_check_balance(self):\n", " node = Node(5)\n", " assert_equal(check_balance(node), True)\n", "\n", " insert(node, 3)\n", " insert(node, 8)\n", " insert(node, 1)\n", " insert(node, 4)\n", " assert_equal(check_balance(node), True)\n", "\n", " node = Node(5)\n", " insert(node, 3)\n", " insert(node, 8)\n", " insert(node, 9)\n", " insert(node, 10)\n", " assert_equal(check_balance(node), False)\n", "\n", " node = Node(3)\n", " insert(node, 2)\n", " insert(node, 1)\n", " insert(node, 5)\n", " insert(node, 4)\n", " insert(node, 6)\n", " insert(node, 7)\n", " assert_equal(check_balance(node), False)\n", "\n", " print('Success: test_check_balance')\n", "\n", "\n", "def main():\n", " test = TestCheckBalance()\n", " test.test_check_balance_empty()\n", " test.test_check_balance()\n", "\n", "\n", "if __name__ == '__main__':\n", " main()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Success: test_check_balance\n" ] } ], "source": [ "%run -i test_check_balance.py" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.0" } }, "nbformat": 4, "nbformat_minor": 0 }