Tweaked ordering of graph and bst challenges.

This commit is contained in:
Donne Martin 2015-08-05 05:47:02 -04:00
parent 25eaf0224a
commit 74d25491ca
5 changed files with 474 additions and 2 deletions

View File

@ -203,13 +203,13 @@ Challenges, solutions, and unit tests are presented in the form of **IPython/Jup
| Challenge | Static Notebooks | | Challenge | Static Notebooks |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------| |--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Implement a binary search tree | [Challenge](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/bst/bst_challenge.ipynb)│[Solution](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/bst/bst_solution.ipynb) |
| Implement depth-first search (pre-, in-, post-order) on a tree | [Challenge](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/tree_dfs/dfs_challenge.ipynb)│[Solution](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/tree_dfs/dfs_solution.ipynb) | | Implement depth-first search (pre-, in-, post-order) on a tree | [Challenge](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/tree_dfs/dfs_challenge.ipynb)│[Solution](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/tree_dfs/dfs_solution.ipynb) |
| Implement breadth-first search on a tree | [Challenge](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/tree_bfs/bfs_challenge.ipynb)│[Solution](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/tree_bfs/bfs_solution.ipynb) | | Implement breadth-first search on a tree | [Challenge](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/tree_bfs/bfs_challenge.ipynb)│[Solution](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/tree_bfs/bfs_solution.ipynb) |
| Determine the height of a tree | [Challenge](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/tree_height/height_challenge.ipynb)│[Solution](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/tree_height/height_solution.ipynb) | | Determine the height of a tree | [Challenge](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/tree_height/height_challenge.ipynb)│[Solution](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/tree_height/height_solution.ipynb) |
| Implement a graph | [Challenge](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph/graph_challenge.ipynb)│[Solution](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph/graph_solution.ipynb) | | Implement a binary search tree | [Challenge](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/bst/bst_challenge.ipynb)│[Solution](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/bst/bst_solution.ipynb) |
| Implement depth-first search on a graph | [Challenge](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph_dfs/dfs_challenge.ipynb)│[Solution](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph_dfs/dfs_solution.ipynb) | | Implement depth-first search on a graph | [Challenge](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph_dfs/dfs_challenge.ipynb)│[Solution](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph_dfs/dfs_solution.ipynb) |
| Implement breadth-first search on a graph | [Challenge](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph_bfs/bfs_challenge.ipynb)│[Solution](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph_bfs/bfs_solution.ipynb) | | Implement breadth-first search on a graph | [Challenge](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph_bfs/bfs_challenge.ipynb)│[Solution](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph_bfs/bfs_solution.ipynb) |
| Implement a graph | [Challenge](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph/graph_challenge.ipynb)│[Solution](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph/graph_solution.ipynb) |
| Print a tree using pre-order traversal without recursion | [Contribute](https://github.com/donnemartin/interactive-coding-challenges/blob/master/CONTRIBUTING.md)│[Contribute](https://github.com/donnemartin/interactive-coding-challenges/blob/master/CONTRIBUTING.md) | | Print a tree using pre-order traversal without recursion | [Contribute](https://github.com/donnemartin/interactive-coding-challenges/blob/master/CONTRIBUTING.md)│[Contribute](https://github.com/donnemartin/interactive-coding-challenges/blob/master/CONTRIBUTING.md) |
| Determine the lowest common ancestor of two nodes | [Contribute](https://github.com/donnemartin/interactive-coding-challenges/blob/master/CONTRIBUTING.md)│[Contribute](https://github.com/donnemartin/interactive-coding-challenges/blob/master/CONTRIBUTING.md) | | Determine the lowest common ancestor of two nodes | [Contribute](https://github.com/donnemartin/interactive-coding-challenges/blob/master/CONTRIBUTING.md)│[Contribute](https://github.com/donnemartin/interactive-coding-challenges/blob/master/CONTRIBUTING.md) |
| Transform a binary tree into a heap | [Contribute](https://github.com/donnemartin/interactive-coding-challenges/blob/master/CONTRIBUTING.md)│[Contribute](https://github.com/donnemartin/interactive-coding-challenges/blob/master/CONTRIBUTING.md) | | Transform a binary tree into a heap | [Contribute](https://github.com/donnemartin/interactive-coding-challenges/blob/master/CONTRIBUTING.md)│[Contribute](https://github.com/donnemartin/interactive-coding-challenges/blob/master/CONTRIBUTING.md) |

View File

@ -0,0 +1,199 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<small><i>This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges).</i></small>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Challenge Notebook"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Problem: Determine whether there is a path between two nodes in a graph.\n",
"\n",
"* [Constraints](#Constraints)\n",
"* [Test Cases](#Test-Cases)\n",
"* [Algorithm](#Algorithm)\n",
"* [Code](#Code)\n",
"* [Unit Test](#Unit-Test)\n",
"* [Solution Notebook](#Solution-Notebook)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Constraints\n",
"\n",
"* Is the graph directed?\n",
" * Yes\n",
"* Can we assume we already have Graph and Node classes?\n",
" * Yes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Cases\n",
"\n",
"Input:\n",
"* `add_edge(source, destination, weight)`\n",
"\n",
"```\n",
"graph.add_edge(0, 1, 5)\n",
"graph.add_edge(0, 4, 3)\n",
"graph.add_edge(0, 5, 2)\n",
"graph.add_edge(1, 3, 5)\n",
"graph.add_edge(1, 4, 4)\n",
"graph.add_edge(2, 1, 6)\n",
"graph.add_edge(3, 2, 7)\n",
"graph.add_edge(3, 4, 8)\n",
"```\n",
"\n",
"Result:\n",
"* search_path(start=0, end=2) -> True\n",
"* search_path(start=0, end=0) -> True\n",
"* search_path(start=4, end=5) -> False"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Algorithm\n",
"\n",
"Refer to the [Solution Notebook](). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Code"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%run ../graph/graph.py\n",
"%load ../graph/graph.py"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def path_exists(start, end):\n",
" # TODO: Implement me\n",
" pass"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Unit Test"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**The following unit test is expected to fail until you solve the challenge.**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# %load test_path_exists.py\n",
"from nose.tools import assert_equal\n",
"\n",
"\n",
"class TestPathExists(object):\n",
"\n",
" def test_path_exists(self):\n",
" nodes = []\n",
" graph = Graph()\n",
" for id in range(0, 6):\n",
" nodes.append(graph.add_node(id))\n",
" graph.add_edge(0, 1, 5)\n",
" graph.add_edge(0, 4, 3)\n",
" graph.add_edge(0, 5, 2)\n",
" graph.add_edge(1, 3, 5)\n",
" graph.add_edge(1, 4, 4)\n",
" graph.add_edge(2, 1, 6)\n",
" graph.add_edge(3, 2, 7)\n",
" graph.add_edge(3, 4, 8)\n",
"\n",
" assert_equal(path_exists(nodes[0], nodes[2]), True)\n",
" assert_equal(path_exists(nodes[0], nodes[0]), True)\n",
" assert_equal(path_exists(nodes[4], nodes[5]), False)\n",
"\n",
" print('Success: test_path_exists')\n",
"\n",
"\n",
"def main():\n",
" test = TestPathExists()\n",
" test.test_path_exists()\n",
"\n",
"\n",
"if __name__ == '__main__':\n",
" main()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Solution Notebook\n",
"\n",
"Review the [Solution Notebook]() for a discussion on algorithms and code solutions."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@ -0,0 +1,240 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<small><i>This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges).</i></small>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Solution Notebook"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Problem: Determine whether there is a path between two nodes in a graph.\n",
"\n",
"* [Constraints](#Constraints)\n",
"* [Test Cases](#Test-Cases)\n",
"* [Algorithm](#Algorithm)\n",
"* [Code](#Code)\n",
"* [Unit Test](#Unit-Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Constraints\n",
"\n",
"* Is the graph directed?\n",
" * Yes\n",
"* Can we assume we already have Graph and Node classes?\n",
" * Yes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Cases\n",
"\n",
"Input:\n",
"* `add_edge(source, destination, weight)`\n",
"\n",
"```\n",
"graph.add_edge(0, 1, 5)\n",
"graph.add_edge(0, 4, 3)\n",
"graph.add_edge(0, 5, 2)\n",
"graph.add_edge(1, 3, 5)\n",
"graph.add_edge(1, 4, 4)\n",
"graph.add_edge(2, 1, 6)\n",
"graph.add_edge(3, 2, 7)\n",
"graph.add_edge(3, 4, 8)\n",
"```\n",
"\n",
"Result:\n",
"* search_path(start=0, end=2) -> True\n",
"* search_path(start=0, end=0) -> True\n",
"* search_path(start=4, end=5) -> False"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Algorithm\n",
"\n",
"We use breadth-first search to determine the shortest path. Depth-first search is easier to implement with just straight recursion, but often results in a longer path.\n",
"\n",
"* Add the start node to the queue and mark it as visited\n",
"* If the start node is the end node, return True\n",
"* While the queue is not empty\n",
" * Dequeue a node and visit it\n",
" * If the node is the end node, return True\n",
" * Iterate through each adjacent node\n",
" * If the node has not been visited, add it to the queue and mark it as visited\n",
"* Return False\n",
"\n",
"Complexity:\n",
"* Time: O(V + E), where V = number of vertices and E = number of edges\n",
"* Space: O(V + E)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Code"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%run ../graph/graph.py"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from collections import deque\n",
"\n",
"\n",
"def path_exists(start, end):\n",
" if start is None or end is None:\n",
" return False\n",
" if start is end:\n",
" return True\n",
" queue = deque()\n",
" queue.append(start)\n",
" start.visited = True\n",
" while queue:\n",
" node = queue.popleft()\n",
" if node is None:\n",
" continue\n",
" if node is end:\n",
" return True\n",
" for adj_node in node.adjacent:\n",
" if not adj_node.visited:\n",
" queue.append(adj_node)\n",
" adj_node.visited = True\n",
" return False"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Unit Test"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting test_path_exists.py\n"
]
}
],
"source": [
"%%writefile test_path_exists.py\n",
"from nose.tools import assert_equal\n",
"\n",
"\n",
"class TestPathExists(object):\n",
"\n",
" def test_path_exists(self):\n",
" nodes = []\n",
" graph = Graph()\n",
" for id in range(0, 6):\n",
" nodes.append(graph.add_node(id))\n",
" graph.add_edge(0, 1, 5)\n",
" graph.add_edge(0, 4, 3)\n",
" graph.add_edge(0, 5, 2)\n",
" graph.add_edge(1, 3, 5)\n",
" graph.add_edge(1, 4, 4)\n",
" graph.add_edge(2, 1, 6)\n",
" graph.add_edge(3, 2, 7)\n",
" graph.add_edge(3, 4, 8)\n",
"\n",
" assert_equal(path_exists(nodes[0], nodes[2]), True)\n",
" assert_equal(path_exists(nodes[0], nodes[0]), True)\n",
" assert_equal(path_exists(nodes[4], nodes[5]), False)\n",
"\n",
" print('Success: test_path_exists')\n",
"\n",
"\n",
"def main():\n",
" test = TestPathExists()\n",
" test.test_path_exists()\n",
"\n",
"\n",
"if __name__ == '__main__':\n",
" main()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Success: test_path_exists\n"
]
}
],
"source": [
"%run -i test_path_exists.py"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@ -0,0 +1,33 @@
from nose.tools import assert_equal
class TestPathExists(object):
def test_path_exists(self):
nodes = []
graph = Graph()
for id in range(0, 6):
nodes.append(graph.add_node(id))
graph.add_edge(0, 1, 5)
graph.add_edge(0, 4, 3)
graph.add_edge(0, 5, 2)
graph.add_edge(1, 3, 5)
graph.add_edge(1, 4, 4)
graph.add_edge(2, 1, 6)
graph.add_edge(3, 2, 7)
graph.add_edge(3, 4, 8)
assert_equal(path_exists(nodes[0], nodes[2]), True)
assert_equal(path_exists(nodes[0], nodes[0]), True)
assert_equal(path_exists(nodes[4], nodes[5]), False)
print('Success: test_path_exists')
def main():
test = TestPathExists()
test.test_path_exists()
if __name__ == '__main__':
main()