mirror of
https://github.com/donnemartin/interactive-coding-challenges.git
synced 2024-03-22 13:11:13 +08:00
Add knapsack unbounded challenge
This commit is contained in:
parent
92590ff3b6
commit
734d3385f6
0
recursion_dynamic/knapsack_unbounded/__init__.py
Normal file
0
recursion_dynamic/knapsack_unbounded/__init__.py
Normal file
|
@ -0,0 +1,211 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Challenge Notebook"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Problem: Given a knapsack with a total weight capacity and a list of items with weight w(i) and value v(i), determine the max total value you can carry.\n",
|
||||
"\n",
|
||||
"* [Constraints](#Constraints)\n",
|
||||
"* [Test Cases](#Test-Cases)\n",
|
||||
"* [Algorithm](#Algorithm)\n",
|
||||
"* [Code](#Code)\n",
|
||||
"* [Unit Test](#Unit-Test)\n",
|
||||
"* [Solution Notebook](#Solution-Notebook)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Constraints\n",
|
||||
"\n",
|
||||
"* Can we replace the items once they are placed in the knapsack?\n",
|
||||
" * Yes, this is the unbounded knapsack problem\n",
|
||||
"* Can we split an item?\n",
|
||||
" * No\n",
|
||||
"* Can we get an input item with weight of 0 or value of 0?\n",
|
||||
" * No\n",
|
||||
"* Do we need to return the items that make up the max total value?\n",
|
||||
" * No, just the total value\n",
|
||||
"* Can we assume the inputs are valid?\n",
|
||||
" * No\n",
|
||||
"* Are the inputs in sorted order by val/weight?\n",
|
||||
" * Yes\n",
|
||||
"* Can we assume this fits memory?\n",
|
||||
" * Yes"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Test Cases\n",
|
||||
"\n",
|
||||
"* items or total weight is None -> Exception\n",
|
||||
"* items or total weight is 0 -> 0\n",
|
||||
"* General case\n",
|
||||
"\n",
|
||||
"<pre>\n",
|
||||
"total_weight = 8\n",
|
||||
"items\n",
|
||||
" v | w\n",
|
||||
" 0 | 0\n",
|
||||
"a 1 | 1\n",
|
||||
"b 3 | 2\n",
|
||||
"c 7 | 4\n",
|
||||
"\n",
|
||||
"max value = 14 \n",
|
||||
"</pre>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Algorithm\n",
|
||||
"\n",
|
||||
"Refer to the [Solution Notebook](). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Code"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class Item(object):\n",
|
||||
"\n",
|
||||
" def __init__(self, label, value, weight):\n",
|
||||
" self.label = label\n",
|
||||
" self.value = value\n",
|
||||
" self.weight = weight\n",
|
||||
"\n",
|
||||
" def __repr__(self):\n",
|
||||
" return self.label + ' v:' + str(self.value) + ' w:' + str(self.weight)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class Knapsack(object):\n",
|
||||
"\n",
|
||||
" def fill_knapsack(self, input_items, total_weight):\n",
|
||||
" # TODO: Implement me\n",
|
||||
" pass"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Unit Test"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**The following unit test is expected to fail until you solve the challenge.**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# %load test_knapsack_unbounded.py\n",
|
||||
"from nose.tools import assert_equal, assert_raises\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class TestKnapsack(object):\n",
|
||||
"\n",
|
||||
" def test_knapsack(self):\n",
|
||||
" knapsack = Knapsack()\n",
|
||||
" assert_raises(TypeError, knapsack.fill_knapsack, None, None)\n",
|
||||
" assert_equal(knapsack.fill_knapsack(0, 0), 0)\n",
|
||||
" items = []\n",
|
||||
" items.append(Item(label='a', value=1, weight=1))\n",
|
||||
" items.append(Item(label='b', value=3, weight=2))\n",
|
||||
" items.append(Item(label='c', value=7, weight=4))\n",
|
||||
" total_weight = 8\n",
|
||||
" expected_value = 14\n",
|
||||
" results = knapsack.fill_knapsack(items, total_weight)\n",
|
||||
" total_weight = 7\n",
|
||||
" expected_value = 11\n",
|
||||
" results = knapsack.fill_knapsack(items, total_weight)\n",
|
||||
" assert_equal(results, expected_value)\n",
|
||||
" print('Success: test_knapsack')\n",
|
||||
"\n",
|
||||
"def main():\n",
|
||||
" test = TestKnapsack()\n",
|
||||
" test.test_knapsack()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"if __name__ == '__main__':\n",
|
||||
" main()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Solution Notebook\n",
|
||||
"\n",
|
||||
"Review the [Solution Notebook]() for a discussion on algorithms and code solutions."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.5.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
|
@ -0,0 +1,298 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Solution Notebook"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Problem: Given a knapsack with a total weight capacity and a list of items with weight w(i) and value v(i), determine the max total value you can carry.\n",
|
||||
"\n",
|
||||
"* [Constraints](#Constraints)\n",
|
||||
"* [Test Cases](#Test-Cases)\n",
|
||||
"* [Algorithm](#Algorithm)\n",
|
||||
"* [Code](#Code)\n",
|
||||
"* [Unit Test](#Unit-Test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Constraints\n",
|
||||
"\n",
|
||||
"* Can we replace the items once they are placed in the knapsack?\n",
|
||||
" * Yes, this is the unbounded knapsack problem\n",
|
||||
"* Can we split an item?\n",
|
||||
" * No\n",
|
||||
"* Can we get an input item with weight of 0 or value of 0?\n",
|
||||
" * No\n",
|
||||
"* Do we need to return the items that make up the max total value?\n",
|
||||
" * No, just the total value\n",
|
||||
"* Can we assume the inputs are valid?\n",
|
||||
" * No\n",
|
||||
"* Are the inputs in sorted order by val/weight?\n",
|
||||
" * Yes\n",
|
||||
"* Can we assume this fits memory?\n",
|
||||
" * Yes"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Test Cases\n",
|
||||
"\n",
|
||||
"* items or total weight is None -> Exception\n",
|
||||
"* items or total weight is 0 -> 0\n",
|
||||
"* General case\n",
|
||||
"\n",
|
||||
"<pre>\n",
|
||||
"total_weight = 8\n",
|
||||
"items\n",
|
||||
" v | w\n",
|
||||
" 0 | 0\n",
|
||||
"a 1 | 1\n",
|
||||
"b 3 | 2\n",
|
||||
"c 7 | 4\n",
|
||||
"\n",
|
||||
"max value = 14 \n",
|
||||
"</pre>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Algorithm\n",
|
||||
"\n",
|
||||
"We'll use bottom up dynamic programming to build a table. \n",
|
||||
"\n",
|
||||
"Taking what we learned with the 0/1 knapsack problem, we could solve the problem like the following:\n",
|
||||
"\n",
|
||||
"<pre>\n",
|
||||
"\n",
|
||||
"v = value\n",
|
||||
"w = weight\n",
|
||||
"\n",
|
||||
" j \n",
|
||||
" -------------------------------------------------\n",
|
||||
" | v | w || 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |\n",
|
||||
" -------------------------------------------------\n",
|
||||
" | 0 | 0 || 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
|
||||
" a | 1 | 1 || 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |\n",
|
||||
"i b | 3 | 2 || 0 | 1 | 3 | 4 | 6 | 7 | 9 | 10 | 12 |\n",
|
||||
" c | 7 | 4 || 0 | 1 | 3 | 4 | 7 | 8 | 10 | 11 | 14 |\n",
|
||||
" -------------------------------------------------\n",
|
||||
"\n",
|
||||
"i = row\n",
|
||||
"j = col\n",
|
||||
"\n",
|
||||
"</pre>\n",
|
||||
"\n",
|
||||
"However, unlike the 0/1 knapsack variant, we don't actually need to keep space of O(n * w), where n is the number of items and w is the total weight. We just need a single array that we update after we process each item:\n",
|
||||
"\n",
|
||||
"<pre>\n",
|
||||
"\n",
|
||||
" -------------------------------------------------\n",
|
||||
" | v | w || 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |\n",
|
||||
" -------------------------------------------------\n",
|
||||
"\n",
|
||||
" -------------------------------------------------\n",
|
||||
" a | 1 | 1 || 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |\n",
|
||||
" -------------------------------------------------\n",
|
||||
"\n",
|
||||
" -------------------------------------------------\n",
|
||||
" b | 3 | 2 || 0 | 1 | 3 | 4 | 6 | 7 | 9 | 10 | 12 |\n",
|
||||
" -------------------------------------------------\n",
|
||||
"\n",
|
||||
" -------------------------------------------------\n",
|
||||
" c | 7 | 4 || 0 | 1 | 3 | 4 | 7 | 8 | 10 | 11 | 14 |\n",
|
||||
" -------------------------------------------------\n",
|
||||
"\n",
|
||||
"if j >= items[i].weight:\n",
|
||||
" T[j] = max(items[i].value + T[j - items[i].weight],\n",
|
||||
" T[j])\n",
|
||||
"\n",
|
||||
"</pre>\n",
|
||||
"\n",
|
||||
"Complexity:\n",
|
||||
"* Time: O(n * w), where n is the number of items and w is the total weight\n",
|
||||
"* Space: O(w), where w is the total weight"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Code"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Item Class"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class Item(object):\n",
|
||||
"\n",
|
||||
" def __init__(self, label, value, weight):\n",
|
||||
" self.label = label\n",
|
||||
" self.value = value\n",
|
||||
" self.weight = weight\n",
|
||||
"\n",
|
||||
" def __repr__(self):\n",
|
||||
" return self.label + ' v:' + str(self.value) + ' w:' + str(self.weight)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Knapsack Bottom Up"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class Knapsack(object):\n",
|
||||
"\n",
|
||||
" def fill_knapsack(self, items, total_weight):\n",
|
||||
" if items is None or total_weight is None:\n",
|
||||
" raise TypeError('items or total_weight cannot be None')\n",
|
||||
" if not items or total_weight == 0:\n",
|
||||
" return 0\n",
|
||||
" num_rows = len(items)\n",
|
||||
" num_cols = total_weight + 1\n",
|
||||
" T = [0] * (num_cols)\n",
|
||||
" for i in range(num_rows):\n",
|
||||
" for j in range(num_cols):\n",
|
||||
" if j >= items[i].weight:\n",
|
||||
" T[j] = max(items[i].value + T[j - items[i].weight],\n",
|
||||
" T[j])\n",
|
||||
" return T[-1]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Unit Test"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Overwriting test_knapsack_unbounded.py\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%writefile test_knapsack_unbounded.py\n",
|
||||
"from nose.tools import assert_equal, assert_raises\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class TestKnapsack(object):\n",
|
||||
"\n",
|
||||
" def test_knapsack(self):\n",
|
||||
" knapsack = Knapsack()\n",
|
||||
" assert_raises(TypeError, knapsack.fill_knapsack, None, None)\n",
|
||||
" assert_equal(knapsack.fill_knapsack(0, 0), 0)\n",
|
||||
" items = []\n",
|
||||
" items.append(Item(label='a', value=1, weight=1))\n",
|
||||
" items.append(Item(label='b', value=3, weight=2))\n",
|
||||
" items.append(Item(label='c', value=7, weight=4))\n",
|
||||
" total_weight = 8\n",
|
||||
" expected_value = 14\n",
|
||||
" results = knapsack.fill_knapsack(items, total_weight)\n",
|
||||
" total_weight = 7\n",
|
||||
" expected_value = 11\n",
|
||||
" results = knapsack.fill_knapsack(items, total_weight)\n",
|
||||
" assert_equal(results, expected_value)\n",
|
||||
" print('Success: test_knapsack')\n",
|
||||
"\n",
|
||||
"def main():\n",
|
||||
" test = TestKnapsack()\n",
|
||||
" test.test_knapsack()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"if __name__ == '__main__':\n",
|
||||
" main()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Success: test_knapsack\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%run -i test_knapsack_unbounded.py"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.4.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
|
@ -0,0 +1,29 @@
|
|||
from nose.tools import assert_equal, assert_raises
|
||||
|
||||
|
||||
class TestKnapsack(object):
|
||||
|
||||
def test_knapsack(self):
|
||||
knapsack = Knapsack()
|
||||
assert_raises(TypeError, knapsack.fill_knapsack, None, None)
|
||||
assert_equal(knapsack.fill_knapsack(0, 0), 0)
|
||||
items = []
|
||||
items.append(Item(label='a', value=1, weight=1))
|
||||
items.append(Item(label='b', value=3, weight=2))
|
||||
items.append(Item(label='c', value=7, weight=4))
|
||||
total_weight = 8
|
||||
expected_value = 14
|
||||
results = knapsack.fill_knapsack(items, total_weight)
|
||||
total_weight = 7
|
||||
expected_value = 11
|
||||
results = knapsack.fill_knapsack(items, total_weight)
|
||||
assert_equal(results, expected_value)
|
||||
print('Success: test_knapsack')
|
||||
|
||||
def main():
|
||||
test = TestKnapsack()
|
||||
test.test_knapsack()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue
Block a user