binary search tree implementation

This commit is contained in:
mag6367 2015-07-18 00:40:13 -05:00
parent a567898dab
commit 5043e791b5
8 changed files with 1017 additions and 0 deletions

BIN
graphs_trees/.DS_Store vendored Normal file

Binary file not shown.

0
graphs_trees/__init__.py Normal file
View File

BIN
graphs_trees/binary_tree/.DS_Store vendored Normal file

Binary file not shown.

View File

View File

@ -0,0 +1,155 @@
class Node (object):
def __init__ (self, data):
self.data = data
self.rightChild = None
self.leftChild = None
class BinaryTree (object):
def __init__ (self):
self.root = None
def insert (self, newData):
leaf = Node(newData)
if self.root is None:
self.root = leaf
else:
current = self.root
parent = self.root
while current is not None:
parent = current
if newData < current.data:
current = current.leftChild
else:
current = current.rightChild
if newData < parent.data:
parent.leftChild = leaf
else:
parent.rightChild = leaf
# returns false if the item to be deleted is not on the tree
def delete (self, data):
current = self.root
parent = self.root
isLeft = False
if current is None:
return False
while current is not None and current.data is not data:
parent = current
if data < current.data:
current = current.leftChild
isLeft = True
else:
current = current.rightChild
isLeft = False
if current is None:
return False
if current.leftChild is None and current.rightChild is None:
if current is self.root:
self.root = None
elif isLeft:
parent.leftChild = None
else:
parent.rightChild = None
elif current.rightChild is None:
if current is self.root:
self.root = current.leftChild
elif isLeft:
parent.leftChild = current.leftChild
else:
parent.rightChild = current.leftChild
elif current.rightChild is None:
if current is self.root:
self.root = current.rightChild
elif isLeft:
parent.lChild = current.rightChild
else:
parent.rightChild = current.rightChild
else:
succesor = current.rightChild
succesorParent = current
while succesor.leftChild is not None:
succesorParent = succesor
succesor = succesor.leftChild
if current is self.root:
self.root = succesor
elif isLeft:
parent.leftChild = succesor
else:
parent.rightChild = succesor
succesor.leftChild = current.leftChild
if succesor is not current.rightChild:
succesorParent.leftChild = succesor.rightChild
succesor.rightChild = current.rightChild
return True
def minNode (self):
current = self.root
while current.leftChild is not None:
current = current.leftChild
return current.data
def maxNode (self):
current = self.root
while current.rightChild is not None:
current = current.rightChild
return current.data
def printPostOrder (self):
global postOrder
postOrder = []
def PostOrder(node):
if node is not None:
PostOrder(node.leftChild)
PostOrder(node.rightChild)
postOrder.append(node.data)
PostOrder(self.root)
return postOrder
def printInOrder (self):
global inOrder
inOrder = []
def InOrder (node):
if node is not None:
InOrder(node.leftChild)
inOrder.append(node.data)
InOrder(node.rightChild)
InOrder(self.root)
return inOrder
def printPreOrder (self):
global preOrder
preOrder = []
def PreOrder (node):
if node is not None:
preOrder.append(node.data)
PreOrder(node.leftChild)
PreOrder(node.rightChild)
PreOrder(self.root)
return preOrder
def treeIsEmpty (self):
return self.root is None

View File

@ -0,0 +1,283 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<small><i>This notebook was prepared by Marco Guajardo. Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges).</i></small>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Challenge Notebook"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Problem: Implement a binary search tree with insert, delete, different traversals & max/min node values\n",
"* [Constraints](#Constraints)\n",
"* [Test Cases](#Test-Cases)\n",
"* [Algorithm](#Algorithm)\n",
"* [Code](#Code)\n",
"* [Unit Test](#Unit-Test)\n",
"* [Solution Notebook](#Solution-Notebook)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Constraints\n",
"* Is this a binary tree?\n",
" * Yes\n",
"* Is the root set to None initially?\n",
" * Yes\n",
"* Do we care if the tree is balanced?\n",
" * No\n",
"* What do we return for the traversals?\n",
" * Return a list of the data in the desired order\n",
"* What type of data can the tree hold?\n",
" * Assume the tree only takes ints. In a realistic example, we'd use a hash table to convert other types to ints."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Cases\n",
"\n",
"### Insert \n",
"\n",
"* Always start with the root\n",
"* If value is less than the root, go to the left child\n",
"* if value is more than the root, go to the right child\n",
"\n",
"\n",
"### Delete\n",
"\n",
"* Deleting a node from a binary tree is tricky. Make sure you arrange the tree correctly when deleting a node.\n",
"* Here are some basic [instructions](http://www.algolist.net/Data_structures/Binary_search_tree/Removal)\n",
"* If the value to delete isn't on the tree return False\n",
"\n",
"### Traverals \n",
"\n",
"* In order traversal -left, center, right\n",
"* Pre order traversal - center, left, right\n",
"* Post order traversal - left, right, center\n",
"* Return list for all traverals \n",
"\n",
"### Max & Min\n",
"* Find the max node in the binary search tree\n",
"* Find the min node in the binary search tree\n",
"\n",
"### treeIsEmpty\n",
"* check if the tree is empty\n",
"\n",
"\n",
"## Algorithm\n",
"\n",
"Refer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/binary_tree_implementation/binary_tree_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Code"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"class Node (object):\n",
" def __init__ (self, data=None):\n",
" #TODO:implement me\n",
" pass\n",
" \n",
" def __str__ (self):\n",
" #TODO:implement me\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"class BinaryTree (object):\n",
" def __init__ (self):\n",
" #TODO:implement me\n",
" pass\n",
" \n",
" def insert (self, newData):\n",
" #TODO:implement me\n",
" pass\n",
" \n",
" def delete (self, key):\n",
" #TODO:implement me\n",
" pass\n",
" \n",
" def maxNode (self):\n",
" #TODO:implement me\n",
" pass\n",
" \n",
" def minNode (self):\n",
" #TODO:implement me\n",
" pass\n",
" \n",
" def printPostOrder (self):\n",
" #TODO:implement me\n",
" pass\n",
" \n",
" def printPreOrder (self):\n",
" #TODO:implement me\n",
" pass\n",
" \n",
" def printInOrder (self):\n",
" #TODO:implement me\n",
" pass\n",
" \n",
" def treeIsEmpty (self):\n",
" #TODO: implement me\n",
" pass\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Unit Test"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**The following unit test is expected to fail until you solve the challenge.**"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from nose.tools import assert_equal\n",
"\n",
"class TestBinaryTree(object):\n",
"\n",
"\tdef test_insert_traversals (self):\n",
"\t\tmyTree = BinaryTree()\n",
"\t\tmyTree2 = BinaryTree()\n",
"\t\tfor num in [50, 30, 70, 10, 40, 60, 80, 7, 25, 38]:\n",
"\t\t\tmyTree.insert(num)\n",
"\t\t[myTree2.insert(num) for num in range (1, 100, 10)]\n",
"\n",
"\t\tprint(\"Test: insert checking with in order traversal\")\n",
"\t\tassert_equal(myTree.printInOrder(), [7, 10, 25, 30, 38, 40, 50, 60, 70, 80])\n",
"\t\tassert_equal(myTree2.printInOrder(), [1, 11, 21, 31, 41, 51, 61, 71, 81, 91])\n",
"\t\tprint(\"Test: insert checking with post order traversal\")\n",
"\t\tassert_equal(myTree.printPostOrder(), [7, 25, 10, 38, 40, 30, 60, 80, 70, 50])\n",
"\t\tassert_equal(myTree2.printPostOrder(), [91, 81, 71, 61, 51, 41, 31, 21, 11, 1])\n",
"\n",
"\n",
"\t\tprint(\"Test: insert checking with pre order traversal\")\n",
"\t\tassert_equal(myTree.printPreOrder(), [50, 30, 10, 7, 25, 40, 38, 70, 60, 80])\n",
"\t\tassert_equal(myTree2.printPreOrder(), [1, 11, 21, 31, 41, 51, 61, 71, 81, 91])\n",
"\n",
"\n",
"\t\tprint(\"Success: test_insert_traversals\")\n",
"\n",
"\tdef test_max_min_nodes (self):\n",
"\t\tmyTree = BinaryTree()\n",
"\t\tmyTree.insert(5)\n",
"\t\tmyTree.insert(1)\n",
"\t\tmyTree.insert(21)\n",
"\n",
"\t\tprint(\"Test: max node\")\n",
"\t\tassert_equal(myTree.maxNode(), 21)\n",
"\t\tmyTree.insert(32)\n",
"\t\tassert_equal(myTree.maxNode(), 32)\n",
"\n",
"\t\tprint(\"Test: min node\")\n",
"\t\tassert_equal(myTree.minNode(), 1)\n",
"\n",
"\t\tprint(\"Test: min node inserting negative number\")\n",
"\t\tmyTree.insert(-10)\n",
"\t\tassert_equal(myTree.minNode(), -10)\n",
"\n",
"\t\tprint(\"Success: test_max_min_nodes\")\n",
"\n",
"\tdef test_delete (self):\n",
"\t\tmyTree = BinaryTree()\n",
"\t\tmyTree.insert(5)\n",
"\n",
"\t\tprint(\"Test: delete\")\n",
"\t\tmyTree.delete(5)\n",
"\t\tassert_equal(myTree.treeIsEmpty(), True)\n",
"\t\t\n",
"\t\tprint(\"Test: more complex deletions\")\n",
"\t\t[myTree.insert(x) for x in range(1, 5)]\n",
"\t\tmyTree.delete(2)\n",
"\t\tassert_equal(myTree.root.rightChild.data, 3)\n",
"\n",
"\n",
"\t\tprint(\"Success: test_delete\")\n",
"\n",
"def main():\n",
" testing = TestBinaryTree()\n",
" testing.test_insert_traversals()\n",
" testing.test_max_min_nodes()\n",
" testing.test_delete()\n",
" \n",
"if __name__=='__main__':\n",
" main()\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Solution NoteBook\n",
"\n",
"Review the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/binary_tree_implementation/binary_tree_solution.ipynb) for a discussion on algorithms and code solutions."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@ -0,0 +1,507 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<small><i>This notebook was prepared by Marco Guajardo. Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges).</i></small>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Solution Notebook"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Problem: Implement a binary search tree with insert, delete, different traversals & max/min node values\n",
"* [Constraints](#Constraints)\n",
"* [Test Cases](#Test-Cases)\n",
"* [Algorithm](#Algorithm)\n",
"* [Code](#Code)\n",
"* [Unit Test](#Unit-Test)\n",
"* [Solution Notebook](#Solution-Notebook)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Constraints\n",
"* Is this a binary tree?\n",
" * Yes\n",
"* Is the root set to None initially?\n",
" * Yes\n",
"* Do we care if the tree is balanced?\n",
" * No\n",
"* What do we return for the traversals?\n",
" * Return a list of the data in the desired order\n",
"* What type of data can the tree hold?\n",
" * Assume the tree only takes ints. In a realistic example, we'd use a hash table to convert other types to ints."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Cases\n",
"\n",
"### Insert \n",
"\n",
"* Always start with the root\n",
"* If value is less than the root, go to the left child\n",
"* if value is more than the root, go to the right child\n",
"\n",
"\n",
"### Delete\n",
"\n",
"* Deleting a node from a binary tree is tricky. Make sure you arrange the tree correctly when deleting a node.\n",
"* Here are some basic [instructions](http://www.algolist.net/Data_structures/Binary_search_tree/Removal)\n",
"* If the value to delete isn't on the tree return False\n",
"\n",
"\n",
"### Traverals \n",
"\n",
"* In order traversal -left, center, right\n",
"* Pre order traversal - center, left, right\n",
"* Post order traversal - left, right, center\n",
"* Return list for all traverals \n",
"\n",
"### Max & Min\n",
"* Find the max node in the binary search tree\n",
"* Find the min node in the binary search tree\n",
"\n",
"### treeIsEmpty\n",
"* check if the tree is empty\n",
"\n",
"\n",
"## Algorithm\n",
"\n",
"Refer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/binary_tree_implementation/binary_tree_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Algorithm\n",
"\n",
"### Insert\n",
"\n",
"* If root is none, insert at root\n",
"* Else\n",
" * While node is not None\n",
" * if value is less go left child\n",
" * If value is more go right child\n",
"\n",
"\n",
"* Time complexity: O(log(n))\n",
"* Space complexity: O(n)\n",
"\n",
"### Min Node\n",
"\n",
"* Keep going to the left child until you reach None and return the value\n",
"\n",
"\n",
"* Time complexity: O(log(n))\n",
"* Space complexity: O(n)\n",
"\n",
"### Max Node\n",
"\n",
"* Keep going to the right child until you reach None and return the value\n",
"\n",
"\n",
"* Time complexity: O(log(n))\n",
"* Space complexity: O(n)\n",
"\n",
"### Traversals\n",
"\n",
"* In order\n",
" * While the node is not None\n",
" * Call left child recursively\n",
" * Append data\n",
" * Call right child recursively \n",
" \n",
"* Post order\n",
" * While the node is not None\n",
" * Call left child recursively\n",
" * Call right child recursively \n",
" * Append data\n",
" \n",
"* Pre order\n",
" * While the node is not None\n",
" * Append data\n",
" * Call left child recursively\n",
" * Call right child recursively \n",
"\n",
"\n",
"* Time complexity: O(n) for all traversals\n",
"* Space complexity: O(n)\n",
"\n",
"### Delete\n",
"\n",
"* First, find value to delete\n",
"* If value is not in tree \n",
" * Return False\n",
"* If value found\n",
" * Check if the node is a left child or right child\n",
" * If node is left child\n",
" * Find the biggest value in all the node's children and replace it with it\n",
" * If node is right child\n",
" * Find the smalles value in all the node's children and replace it with it\n",
"\n",
"\n",
"* Time complexity: O(log(n))\n",
"* Space complexity: O(n)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Code"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting binary_search_tree.py\n"
]
}
],
"source": [
"%%writefile binary_search_tree.py\n",
"\n",
"class Node (object):\n",
"\tdef __init__ (self, data):\n",
"\t\tself.data = data\n",
"\t\tself.rightChild = None\n",
"\t\tself.leftChild = None\n",
"\n",
"class BinaryTree (object):\n",
"\tdef __init__ (self):\n",
"\t\tself.root = None\n",
"\n",
"\tdef insert (self, newData):\n",
"\t\tleaf = Node(newData)\n",
"\n",
"\t\tif self.root is None:\n",
"\t\t\tself.root = leaf\n",
"\t\telse:\n",
"\t\t\tcurrent = self.root\n",
"\t\t\tparent = self.root\n",
"\t\t\twhile current is not None:\n",
"\t\t\t\tparent = current\n",
"\t\t\t\tif newData < current.data:\n",
"\t\t\t\t\tcurrent = current.leftChild\n",
"\t\t\t\telse:\n",
"\t\t\t\t\tcurrent = current.rightChild\n",
"\n",
"\t\t\tif newData < parent.data:\n",
"\t\t\t\tparent.leftChild = leaf\n",
"\t\t\telse:\n",
"\t\t\t\tparent.rightChild = leaf\n",
"\n",
"\t# returns false if the item to be deleted is not on the tree\n",
"\tdef delete (self, data):\n",
"\t\tcurrent = self.root\n",
"\t\tparent = self.root\n",
"\t\tisLeft = False\n",
"\n",
"\t\tif current is None:\n",
"\t\t\treturn False\n",
"\n",
"\t\twhile current is not None and current.data is not data:\n",
"\t\t\tparent = current\n",
"\t\t\tif data < current.data:\n",
"\t\t\t\tcurrent = current.leftChild\n",
"\t\t\t\tisLeft = True \n",
"\t\t\telse:\n",
"\t\t\t\tcurrent = current.rightChild\n",
"\t\t\t\tisLeft = False\n",
"\n",
"\t\tif current is None:\n",
"\t\t\treturn False\n",
"\n",
"\t\tif current.leftChild is None and current.rightChild is None:\n",
"\t\t\tif current is self.root:\n",
"\t\t\t\tself.root = None\n",
"\t\t\telif isLeft:\n",
"\t\t\t\tparent.leftChild = None\n",
"\t\t\telse:\n",
"\t\t\t\tparent.rightChild = None\n",
"\n",
"\t\telif current.rightChild is None:\n",
"\t\t\tif current is self.root:\n",
"\t\t\t\tself.root = current.leftChild\n",
"\t\t\telif isLeft:\n",
"\t\t\t\tparent.leftChild = current.leftChild\n",
"\t\t\telse:\n",
"\t\t\t\tparent.rightChild = current.leftChild\n",
"\n",
"\t\telif current.rightChild is None:\n",
"\t\t\tif current is self.root:\n",
"\t\t\t\tself.root = current.rightChild\n",
"\t\t\telif isLeft:\n",
"\t\t\t\tparent.lChild = current.rightChild\n",
"\t\t\telse:\n",
"\t\t\t\tparent.rightChild = current.rightChild\n",
"\n",
"\t\telse:\n",
"\t\t\tsuccesor = current.rightChild\n",
"\t\t\tsuccesorParent = current\n",
"\n",
"\t\t\twhile succesor.leftChild is not None:\n",
"\t\t\t\tsuccesorParent = succesor\n",
"\t\t\t\tsuccesor = succesor.leftChild\n",
"\n",
"\t\t\tif current is self.root:\n",
"\t\t\t\tself.root = succesor\n",
"\t\t\telif isLeft:\n",
"\t\t\t\tparent.leftChild = succesor\n",
"\t\t\telse:\n",
"\t\t\t\tparent.rightChild = succesor\n",
"\n",
"\t\t\tsuccesor.leftChild = current.leftChild\n",
"\n",
"\t\t\tif succesor is not current.rightChild:\n",
"\t\t\t\tsuccesorParent.leftChild = succesor.rightChild\n",
"\t\t\t\tsuccesor.rightChild = current.rightChild\n",
"\n",
"\t\treturn True \n",
"\n",
"\n",
"\tdef minNode (self):\n",
"\t\tcurrent = self.root\n",
"\t\twhile current.leftChild is not None:\n",
"\t\t\tcurrent = current.leftChild\n",
"\n",
"\t\treturn current.data\n",
"\n",
"\tdef maxNode (self):\n",
"\t\tcurrent = self.root\n",
"\t\twhile current.rightChild is not None:\n",
"\t\t\tcurrent = current.rightChild\n",
"\n",
"\t\treturn current.data\n",
"\n",
"\tdef printPostOrder (self):\n",
"\t\tglobal postOrder\n",
"\t\tpostOrder = []\n",
"\n",
"\t\tdef PostOrder(node):\n",
"\t\t\tif node is not None:\n",
"\t\t\t\tPostOrder(node.leftChild)\n",
"\t\t\t\tPostOrder(node.rightChild)\n",
"\t\t\t\tpostOrder.append(node.data)\n",
"\n",
"\t\tPostOrder(self.root)\n",
"\t\treturn postOrder\n",
"\n",
"\tdef printInOrder (self):\n",
"\t\tglobal inOrder \n",
"\t\tinOrder = []\n",
"\n",
"\t\tdef InOrder (node):\n",
"\t\t\tif node is not None:\n",
"\t\t\t\tInOrder(node.leftChild)\n",
"\t\t\t\tinOrder.append(node.data)\n",
"\t\t\t\tInOrder(node.rightChild)\n",
"\n",
"\t\tInOrder(self.root)\n",
"\t\treturn inOrder\n",
"\n",
"\tdef printPreOrder (self):\n",
"\t\tglobal preOrder\n",
"\t\tpreOrder = []\n",
"\n",
"\t\tdef PreOrder (node):\n",
"\t\t\tif node is not None:\n",
"\t\t\t\tpreOrder.append(node.data)\n",
"\t\t\t\tPreOrder(node.leftChild)\n",
"\t\t\t\tPreOrder(node.rightChild)\n",
"\n",
"\t\tPreOrder(self.root)\n",
"\t\treturn preOrder\n",
"\n",
"\tdef treeIsEmpty (self):\n",
"\t\treturn self.root is None"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%run binary_search_tree.py"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting test_binary_search_tree.py\n"
]
}
],
"source": [
"%%writefile test_binary_search_tree.py\n",
"from nose.tools import assert_equal\n",
"\n",
"class TestBinaryTree(BinaryTree):\n",
"\n",
"\tdef test_insert_traversals (self):\n",
"\t\tmyTree = BinaryTree()\n",
"\t\tmyTree2 = BinaryTree()\n",
"\t\tfor num in [50, 30, 70, 10, 40, 60, 80, 7, 25, 38]:\n",
"\t\t\tmyTree.insert(num)\n",
"\t\t[myTree2.insert(num) for num in range (1, 100, 10)]\n",
"\n",
"\t\tprint(\"Test: insert checking with in order traversal\")\n",
"\t\tassert_equal(myTree.printInOrder(), [7, 10, 25, 30, 38, 40, 50, 60, 70, 80])\n",
"\t\tassert_equal(myTree2.printInOrder(), [1, 11, 21, 31, 41, 51, 61, 71, 81, 91])\n",
"\t\tprint(\"Test: insert checking with post order traversal\")\n",
"\t\tassert_equal(myTree.printPostOrder(), [7, 25, 10, 38, 40, 30, 60, 80, 70, 50])\n",
"\t\tassert_equal(myTree2.printPostOrder(), [91, 81, 71, 61, 51, 41, 31, 21, 11, 1])\n",
"\n",
"\n",
"\t\tprint(\"Test: insert checking with pre order traversal\")\n",
"\t\tassert_equal(myTree.printPreOrder(), [50, 30, 10, 7, 25, 40, 38, 70, 60, 80])\n",
"\t\tassert_equal(myTree2.printPreOrder(), [1, 11, 21, 31, 41, 51, 61, 71, 81, 91])\n",
"\n",
"\n",
"\t\tprint(\"Success: test_insert_traversals\")\n",
"\n",
"\tdef test_max_min_nodes (self):\n",
"\t\tmyTree = BinaryTree()\n",
"\t\tmyTree.insert(5)\n",
"\t\tmyTree.insert(1)\n",
"\t\tmyTree.insert(21)\n",
"\n",
"\t\tprint(\"Test: max node\")\n",
"\t\tassert_equal(myTree.maxNode(), 21)\n",
"\t\tmyTree.insert(32)\n",
"\t\tassert_equal(myTree.maxNode(), 32)\n",
"\n",
"\t\tprint(\"Test: min node\")\n",
"\t\tassert_equal(myTree.minNode(), 1)\n",
"\n",
"\t\tprint(\"Test: min node inserting negative number\")\n",
"\t\tmyTree.insert(-10)\n",
"\t\tassert_equal(myTree.minNode(), -10)\n",
"\n",
"\t\tprint(\"Success: test_max_min_nodes\")\n",
"\n",
"\tdef test_delete (self):\n",
"\t\tmyTree = BinaryTree()\n",
"\t\tmyTree.insert(5)\n",
"\n",
"\t\tprint(\"Test: delete\")\n",
"\t\tmyTree.delete(5)\n",
"\t\tassert_equal(myTree.treeIsEmpty(), True)\n",
"\t\t\n",
"\t\tprint(\"Test: more complex deletions\")\n",
"\t\t[myTree.insert(x) for x in range(1, 5)]\n",
"\t\tmyTree.delete(2)\n",
"\t\tassert_equal(myTree.root.rightChild.data, 3)\n",
"\t\tprint(\"Test: delete invalid value\")\n",
"\t\tassert_equal(myTree.delete(100), False)\n",
"\n",
"\n",
"\t\tprint(\"Success: test_delete\")\n",
"\n",
"def main():\n",
" testing = TestBinaryTree()\n",
" testing.test_insert_traversals()\n",
" testing.test_max_min_nodes()\n",
" testing.test_delete()\n",
" \n",
"if __name__=='__main__':\n",
" main()"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Test: insert checking with in order traversal\n",
"Test: insert checking with post order traversal\n",
"Test: insert checking with pre order traversal\n",
"Success: test_insert_traversals\n",
"Test: max node\n",
"Test: min node\n",
"Test: min node inserting negative number\n",
"Success: test_max_min_nodes\n",
"Test: delete\n",
"Test: more complex deletions\n",
"Test: delete invalid value\n",
"Success: test_delete\n"
]
}
],
"source": [
"%run -i test_binary_search_tree.py"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@ -0,0 +1,72 @@
from nose.tools import assert_equal
class TestBinaryTree(BinaryTree):
def test_insert_traversals (self):
myTree = BinaryTree()
myTree2 = BinaryTree()
for num in [50, 30, 70, 10, 40, 60, 80, 7, 25, 38]:
myTree.insert(num)
[myTree2.insert(num) for num in range (1, 100, 10)]
print("Test: insert checking with in order traversal")
assert_equal(myTree.printInOrder(), [7, 10, 25, 30, 38, 40, 50, 60, 70, 80])
assert_equal(myTree2.printInOrder(), [1, 11, 21, 31, 41, 51, 61, 71, 81, 91])
print("Test: insert checking with post order traversal")
assert_equal(myTree.printPostOrder(), [7, 25, 10, 38, 40, 30, 60, 80, 70, 50])
assert_equal(myTree2.printPostOrder(), [91, 81, 71, 61, 51, 41, 31, 21, 11, 1])
print("Test: insert checking with pre order traversal")
assert_equal(myTree.printPreOrder(), [50, 30, 10, 7, 25, 40, 38, 70, 60, 80])
assert_equal(myTree2.printPreOrder(), [1, 11, 21, 31, 41, 51, 61, 71, 81, 91])
print("Success: test_insert_traversals")
def test_max_min_nodes (self):
myTree = BinaryTree()
myTree.insert(5)
myTree.insert(1)
myTree.insert(21)
print("Test: max node")
assert_equal(myTree.maxNode(), 21)
myTree.insert(32)
assert_equal(myTree.maxNode(), 32)
print("Test: min node")
assert_equal(myTree.minNode(), 1)
print("Test: min node inserting negative number")
myTree.insert(-10)
assert_equal(myTree.minNode(), -10)
print("Success: test_max_min_nodes")
def test_delete (self):
myTree = BinaryTree()
myTree.insert(5)
print("Test: delete")
myTree.delete(5)
assert_equal(myTree.treeIsEmpty(), True)
print("Test: more complex deletions")
[myTree.insert(x) for x in range(1, 5)]
myTree.delete(2)
assert_equal(myTree.root.rightChild.data, 3)
print("Test: delete invalid value")
assert_equal(myTree.delete(100), False)
print("Success: test_delete")
def main():
testing = TestBinaryTree()
testing.test_insert_traversals()
testing.test_max_min_nodes()
testing.test_delete()
if __name__=='__main__':
main()