Add graph shortest path unweighted challenge

This commit is contained in:
Donne Martin 2017-03-30 05:40:14 -04:00
parent d352f56ecb
commit 3837b5a8cc
4 changed files with 522 additions and 0 deletions

View File

@ -0,0 +1,215 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Challenge Notebook"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Problem: Find the shortest path between two nodes in a graph.\n",
"\n",
"* [Constraints](#Constraints)\n",
"* [Test Cases](#Test-Cases)\n",
"* [Algorithm](#Algorithm)\n",
"* [Code](#Code)\n",
"* [Unit Test](#Unit-Test)\n",
"* [Solution Notebook](#Solution-Notebook)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Constraints\n",
"\n",
"* Is the graph directed?\n",
" * Yes\n",
"* Is the graph weighted?\n",
" * No\n",
"* Can we assume we already have Graph and Node classes?\n",
" * Yes\n",
"* Are the inputs two Nodes?\n",
" * Yes\n",
"* Is the output a list of Node keys that make up the shortest path?\n",
" * Yes\n",
"* If there is no path, should we return None?\n",
" * Yes\n",
"* Can we assume this is a connected graph?\n",
" * Yes\n",
"* Can we assume the inputs are valid?\n",
" * Yes\n",
"* Can we assume this fits memory?\n",
" * Yes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Cases\n",
"\n",
"Input:\n",
"* `add_edge(source, destination, weight)`\n",
"\n",
"```\n",
"graph.add_edge(0, 1)\n",
"graph.add_edge(0, 4)\n",
"graph.add_edge(0, 5)\n",
"graph.add_edge(1, 3)\n",
"graph.add_edge(1, 4)\n",
"graph.add_edge(2, 1)\n",
"graph.add_edge(3, 2)\n",
"graph.add_edge(3, 4)\n",
"```\n",
"\n",
"Result:\n",
"* search_path(start=0, end=2) -> [0, 1, 3, 2]\n",
"* search_path(start=0, end=0) -> [0]\n",
"* search_path(start=4, end=5) -> None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Algorithm\n",
"\n",
"Refer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph_path_exists/path_exists_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Code"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%run ../graph/graph.py\n",
"%load ../graph/graph.py"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"class GraphShortestPath(Graph):\n",
"\n",
" def shortest_path(self, source_key, dest_key):\n",
" # TODO: Implement me\n",
" pass"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Unit Test"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**The following unit test is expected to fail until you solve the challenge.**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# %load test_shortest_path.py\n",
"from nose.tools import assert_equal\n",
"\n",
"\n",
"class TestShortestPath(object):\n",
"\n",
" def test_shortest_path(self):\n",
" nodes = []\n",
" graph = GraphShortestPath()\n",
" for id in range(0, 6):\n",
" nodes.append(graph.add_node(id))\n",
" graph.add_edge(0, 1)\n",
" graph.add_edge(0, 4)\n",
" graph.add_edge(0, 5)\n",
" graph.add_edge(1, 3)\n",
" graph.add_edge(1, 4)\n",
" graph.add_edge(2, 1)\n",
" graph.add_edge(3, 2)\n",
" graph.add_edge(3, 4)\n",
"\n",
" assert_equal(graph.shortest_path(nodes[0].key, nodes[2].key), [0, 1, 3, 2])\n",
" assert_equal(graph.shortest_path(nodes[0].key, nodes[0].key), [0])\n",
" assert_equal(graph.shortest_path(nodes[4].key, nodes[5].key), None)\n",
"\n",
" print('Success: test_shortest_path')\n",
"\n",
"\n",
"def main():\n",
" test = TestShortestPath()\n",
" test.test_shortest_path()\n",
"\n",
"\n",
"if __name__ == '__main__':\n",
" main()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Solution Notebook\n",
"\n",
"Review the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph_path_exists/path_exists_solution.ipynb) for a discussion on algorithms and code solutions."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@ -0,0 +1,274 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Solution Notebook"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Problem: Find the shortest path between two nodes in a graph.\n",
"\n",
"* [Constraints](#Constraints)\n",
"* [Test Cases](#Test-Cases)\n",
"* [Algorithm](#Algorithm)\n",
"* [Code](#Code)\n",
"* [Unit Test](#Unit-Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Constraints\n",
"\n",
"* Is the graph directed?\n",
" * Yes\n",
"* Is the graph weighted?\n",
" * No\n",
"* Can we assume we already have Graph and Node classes?\n",
" * Yes\n",
"* Are the inputs two Nodes?\n",
" * Yes\n",
"* Is the output a list of Node keys that make up the shortest path?\n",
" * Yes\n",
"* If there is no path, should we return None?\n",
" * Yes\n",
"* Can we assume this is a connected graph?\n",
" * Yes\n",
"* Can we assume the inputs are valid?\n",
" * Yes\n",
"* Can we assume this fits memory?\n",
" * Yes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Cases\n",
"\n",
"Input:\n",
"* `add_edge(source, destination, weight)`\n",
"\n",
"```\n",
"graph.add_edge(0, 1)\n",
"graph.add_edge(0, 4)\n",
"graph.add_edge(0, 5)\n",
"graph.add_edge(1, 3)\n",
"graph.add_edge(1, 4)\n",
"graph.add_edge(2, 1)\n",
"graph.add_edge(3, 2)\n",
"graph.add_edge(3, 4)\n",
"```\n",
"\n",
"Result:\n",
"* search_path(start=0, end=2) -> [0, 1, 3, 2]\n",
"* search_path(start=0, end=0) -> [0]\n",
"* search_path(start=4, end=5) -> None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Algorithm\n",
"\n",
"To determine the shorted path in an unweighted graph, we can use breadth-first search keeping track of the previous nodes ids for each node. Previous nodes ids can be a dictionary of key: current node id and value: previous node id.\n",
"\n",
"* If the start node is the end node, return True\n",
"* Add the start node to the queue and mark it as visited\n",
" * Update the previous node ids, the previous node id of the start node is None\n",
"* While the queue is not empty\n",
" * Dequeue a node and visit it\n",
" * If the node is the end node, return the previous nodes\n",
" * Set the previous node to the current node\n",
" * Iterate through each adjacent node\n",
" * If the node has not been visited, add it to the queue and mark it as visited\n",
" * Update the previous node ids\n",
"* Return None\n",
"\n",
"Walk the previous node ids backwards to get the path.\n",
"\n",
"Complexity:\n",
"* Time: O(V + E), where V = number of vertices and E = number of edges\n",
"* Space: O(V + E)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Code"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%run ../graph/graph.py"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from collections import deque\n",
"\n",
"\n",
"class GraphShortestPath(Graph):\n",
"\n",
" def shortest_path(self, source_key, dest_key):\n",
" if source_key is None or dest_key is None:\n",
" return None\n",
" if source_key is dest_key:\n",
" return [source_key]\n",
" prev_node_keys = self._shortest_path(source_key, dest_key)\n",
" if prev_node_keys is None:\n",
" return None\n",
" else:\n",
" path_ids = [dest_key]\n",
" prev_node_key = prev_node_keys[dest_key]\n",
" while prev_node_key is not None:\n",
" path_ids.append(prev_node_key)\n",
" prev_node_key = prev_node_keys[prev_node_key]\n",
" return path_ids[::-1]\n",
"\n",
" def _shortest_path(self, source_key, dest_key):\n",
" queue = deque()\n",
" queue.append(self.nodes[source_key])\n",
" prev_node_keys = {source_key: None}\n",
" self.nodes[source_key].visit_state = State.visited\n",
" while queue:\n",
" node = queue.popleft()\n",
" if node.key is dest_key:\n",
" return prev_node_keys\n",
" prev_node = node\n",
" for adj_node in node.adj_nodes.values():\n",
" if adj_node.visit_state == State.unvisited:\n",
" queue.append(adj_node)\n",
" prev_node_keys[adj_node.key] = prev_node.key\n",
" adj_node.visit_state = State.visited\n",
" return None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Unit Test"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting test_shortest_path.py\n"
]
}
],
"source": [
"%%writefile test_shortest_path.py\n",
"from nose.tools import assert_equal\n",
"\n",
"\n",
"class TestShortestPath(object):\n",
"\n",
" def test_shortest_path(self):\n",
" nodes = []\n",
" graph = GraphShortestPath()\n",
" for id in range(0, 6):\n",
" nodes.append(graph.add_node(id))\n",
" graph.add_edge(0, 1)\n",
" graph.add_edge(0, 4)\n",
" graph.add_edge(0, 5)\n",
" graph.add_edge(1, 3)\n",
" graph.add_edge(1, 4)\n",
" graph.add_edge(2, 1)\n",
" graph.add_edge(3, 2)\n",
" graph.add_edge(3, 4)\n",
"\n",
" assert_equal(graph.shortest_path(nodes[0].key, nodes[2].key), [0, 1, 3, 2])\n",
" assert_equal(graph.shortest_path(nodes[0].key, nodes[0].key), [0])\n",
" assert_equal(graph.shortest_path(nodes[4].key, nodes[5].key), None)\n",
"\n",
" print('Success: test_shortest_path')\n",
"\n",
"\n",
"def main():\n",
" test = TestShortestPath()\n",
" test.test_shortest_path()\n",
"\n",
"\n",
"if __name__ == '__main__':\n",
" main()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Success: test_shortest_path\n"
]
}
],
"source": [
"%run -i test_shortest_path.py"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.0"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@ -0,0 +1,33 @@
from nose.tools import assert_equal
class TestShortestPath(object):
def test_shortest_path(self):
nodes = []
graph = GraphShortestPath()
for id in range(0, 6):
nodes.append(graph.add_node(id))
graph.add_edge(0, 1)
graph.add_edge(0, 4)
graph.add_edge(0, 5)
graph.add_edge(1, 3)
graph.add_edge(1, 4)
graph.add_edge(2, 1)
graph.add_edge(3, 2)
graph.add_edge(3, 4)
assert_equal(graph.shortest_path(nodes[0].key, nodes[2].key), [0, 1, 3, 2])
assert_equal(graph.shortest_path(nodes[0].key, nodes[0].key), [0])
assert_equal(graph.shortest_path(nodes[4].key, nodes[5].key), None)
print('Success: test_shortest_path')
def main():
test = TestShortestPath()
test.test_shortest_path()
if __name__ == '__main__':
main()