2015-05-04 05:54:50 -04:00
{
"cells": [
2015-06-17 16:36:55 -04:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
2015-07-03 19:55:56 -04:00
"<small><i>This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/coding-challenges).</i></small>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Solution Notebook"
2015-06-17 16:36:55 -04:00
]
},
2015-05-04 05:54:50 -04:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
2015-05-08 16:48:22 -04:00
"## Problem: Compress a string such that 'AAABCCDDDD' becomes 'A3B1C2D4'\n",
2015-05-04 05:54:50 -04:00
"\n",
2015-06-30 05:55:58 -04:00
"* [Constraints](#Constraints)\n",
2015-05-04 05:54:50 -04:00
"* [Test Cases](#Test-Cases)\n",
"* [Algorithm: List](#Algorithm:-List)\n",
"* [Code: List](#Code:-List)\n",
"* [Algorithm: Byte Array](#Algorithm:-Byte-Array)\n",
2015-06-24 18:20:20 -04:00
"* [Code: Byte array](#Code:-Byte-Array)\n",
"* [Unit Test](#Unit-Test)"
2015-05-04 05:54:50 -04:00
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
2015-06-28 07:13:27 -04:00
"## Constraints\n",
2015-05-04 05:54:50 -04:00
"\n",
2015-07-03 19:55:56 -04:00
"*Problem statements are sometimes ambiguous. Identifying constraints and stating assumptions can help to ensure you code the intended solution.*\n",
2015-06-24 18:20:20 -04:00
"\n",
2015-07-03 19:55:56 -04:00
"* Can we assume the string is ASCII?\n",
2015-06-24 18:20:20 -04:00
" * Yes\n",
" * Note: Unicode strings could require special handling depending on your language\n",
2015-05-04 05:54:50 -04:00
"* Can you use additional data structures? \n",
" * Yes\n",
"* Is this case sensitive?\n",
2015-05-08 16:48:22 -04:00
" * Yes\n",
"* Do you compress even if it doesn't save space?\n",
" * No"
2015-05-04 05:54:50 -04:00
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Cases\n",
"\n",
2015-07-03 19:55:56 -04:00
"* None -> None\n",
2015-05-04 05:54:50 -04:00
"* '' -> ''\n",
2015-07-03 19:55:56 -04:00
"* 'AABBCC' -> 'AABBCC'\n",
2015-05-04 05:54:50 -04:00
"* 'AAABCCDDDD' -> 'A3B1C2D4'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Algorithm: List\n",
"\n",
2015-07-03 19:55:56 -04:00
"Since Python strings are immutable, we'll use a list of characters instead to exercise string manipulation as you would get with a C string. We'll convert the list to a string at the end of the algorithm.\n",
2015-05-04 05:54:50 -04:00
"\n",
2015-06-24 18:20:20 -04:00
"* Calculate the size of the compressed string\n",
2015-05-04 05:54:50 -04:00
"* If the compressed string size is >= string size, return string\n",
"* Create compressed_string\n",
2015-06-24 18:20:20 -04:00
" * For each char in string\n",
" * If char is the same as last_char, increment count\n",
" * Else\n",
" * Append last_char to compressed_string\n",
" * append count to compressed_string\n",
" * count = 1\n",
" * last_char = char\n",
2015-05-04 05:54:50 -04:00
" * Append last_char to compressed_string\n",
2015-06-24 18:20:20 -04:00
" * Append count to compressed_string\n",
" * Return compressed_string\n",
2015-05-04 05:54:50 -04:00
"\n",
"Complexity:\n",
"* Time: O(n)\n",
2015-07-03 19:55:56 -04:00
"* Space: O(n) additional space for the list"
2015-05-04 05:54:50 -04:00
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Code: List"
]
},
{
"cell_type": "code",
2015-06-24 18:20:20 -04:00
"execution_count": 1,
2015-05-04 05:54:50 -04:00
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def compress_string(string):\n",
" if string is None or len(string) == 0:\n",
" return string\n",
2015-06-24 18:20:20 -04:00
" \n",
" # Calculate the size of the compressed string\n",
2015-05-04 05:54:50 -04:00
" size = 0\n",
" last_char = string[0]\n",
" for char in string:\n",
2015-06-24 18:20:20 -04:00
" if char != last_char:\n",
2015-05-04 05:54:50 -04:00
" size += 2\n",
" last_char = char\n",
" size += 2\n",
2015-06-24 18:20:20 -04:00
" \n",
" # If the compressed string size is greater than \n",
" # or equal to string size, return string\n",
2015-05-04 05:54:50 -04:00
" if size >= len(string):\n",
" return string\n",
2015-06-24 18:20:20 -04:00
"\n",
" # Create compressed_string\n",
2015-05-04 05:54:50 -04:00
" compressed_string = list()\n",
" count = 0\n",
" last_char = string[0]\n",
" for char in string:\n",
" if char == last_char:\n",
" count += 1\n",
" else:\n",
" compressed_string.append(last_char)\n",
" compressed_string.append(str(count))\n",
" count = 1\n",
" last_char = char\n",
" compressed_string.append(last_char)\n",
" compressed_string.append(str(count))\n",
2015-06-24 18:20:20 -04:00
" return \"\".join(compressed_string)"
2015-05-04 05:54:50 -04:00
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Algorithm: Byte Array\n",
"\n",
2015-07-03 19:55:56 -04:00
"As a bonus solution, we can solve this problem with a byte array.\n",
"\n",
"The byte array algorithm similar when using a list, except we will need to work with the bytearray's character codes (using the function ord) instead of the characters as we did above when we implemented this solution with a list.\n",
2015-05-04 05:54:50 -04:00
"\n",
"Complexity:\n",
"* Time: O(n)\n",
"* Space: O(m) where m is the size of the compressed bytearray"
]
},
{
"cell_type": "code",
2015-06-24 18:20:20 -04:00
"execution_count": 2,
2015-05-04 05:54:50 -04:00
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
2015-06-21 21:42:24 -04:00
"def compress_string_alt(string):\n",
2015-05-04 05:54:50 -04:00
" if string is None or len(string) == 0:\n",
" return string\n",
2015-06-24 18:20:20 -04:00
" \n",
" # Calculate the size of the compressed string\n",
2015-05-04 05:54:50 -04:00
" size = 0\n",
" last_char_code = string[0]\n",
" for char_code in string:\n",
2015-06-24 18:20:20 -04:00
" if char_code != last_char_code:\n",
2015-05-04 05:54:50 -04:00
" size += 2\n",
" last_char_code = char_code\n",
" size += 2\n",
2015-06-24 18:20:20 -04:00
" \n",
" # If the compressed string size is greater than \n",
" # or equal to string size, return string \n",
2015-05-04 05:54:50 -04:00
" if size >= len(string):\n",
" return string\n",
2015-06-24 18:20:20 -04:00
" \n",
" # Create compressed_string\n",
2015-05-04 05:54:50 -04:00
" compressed_string = bytearray(size)\n",
" pos = 0\n",
" count = 0\n",
" last_char_code = string[0]\n",
" for char_code in string:\n",
" if char_code == last_char_code:\n",
" count += 1\n",
" else:\n",
" compressed_string[pos] = last_char_code\n",
2015-06-24 18:20:20 -04:00
" compressed_string[pos+1] = ord(str(count))\n",
2015-05-04 05:54:50 -04:00
" pos += 2\n",
" count = 1\n",
" last_char_code = char_code\n",
" compressed_string[pos] = last_char_code\n",
2015-06-24 18:20:20 -04:00
" compressed_string[pos+1] = ord(str(count))\n",
" return compressed_string"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
2015-07-03 19:55:56 -04:00
"## Code: Byte Array"
2015-06-24 18:20:20 -04:00
]
},
2015-06-25 17:36:09 -04:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
2015-07-03 19:55:56 -04:00
"## Unit Test"
2015-06-25 17:36:09 -04:00
]
},
2015-06-24 18:20:20 -04:00
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2015-07-03 19:55:56 -04:00
"Overwriting test_compress.py\n"
2015-06-24 18:20:20 -04:00
]
}
],
"source": [
2015-07-03 19:55:56 -04:00
"%%writefile test_compress.py\n",
2015-06-24 18:20:20 -04:00
"from nose.tools import assert_equal\n",
2015-05-04 05:54:50 -04:00
"\n",
2015-07-03 19:55:56 -04:00
"\n",
"class TestCompress(object):\n",
" \n",
2015-06-24 18:20:20 -04:00
" def test_compress(self, func):\n",
" assert_equal(func(None), None)\n",
" assert_equal(func(''), '')\n",
2015-07-03 19:55:56 -04:00
" assert_equal(func('AABBCC'), 'AABBCC')\n",
2015-06-24 18:20:20 -04:00
" assert_equal(func('AAABCCDDDD'), 'A3B1C2D4')\n",
" print('Success: test_compress')\n",
"\n",
2015-07-03 19:55:56 -04:00
"def main():\n",
" test = TestCompress()\n",
2015-06-24 18:20:20 -04:00
" test.test_compress(compress_string)\n",
2015-07-03 19:55:56 -04:00
" try:\n",
" test.test_compress(compress_string_alt)\n",
" except NameError:\n",
" # Alternate solutions are only defined\n",
" # in the solutions file\n",
" pass\n",
"\n",
"if __name__ == '__main__':\n",
" main()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Success: test_compress\n",
"Success: test_compress\n"
]
}
],
"source": [
"%run -i test_compress.py"
2015-05-04 05:54:50 -04:00
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
2015-06-17 16:36:55 -04:00
"version": "2.7.10"
2015-05-04 05:54:50 -04:00
}
},
"nbformat": 4,
"nbformat_minor": 0
}