interactive-coding-challenges/math_probability/math_ops/math_ops_solution.ipynb

237 lines
6.2 KiB
Python
Raw Normal View History

2017-03-29 16:44:38 +08:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Solution Notebook"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Problem: Create a class with an insert method to insert an int to a list. It should also support calculating the max, min, mean, and mode in O(1).\n",
"\n",
"* [Constraints](#Constraints)\n",
"* [Test Cases](#Test-Cases)\n",
"* [Algorithm](#Algorithm)\n",
"* [Code](#Code)\n",
"* [Unit Test](#Unit-Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Constraints\n",
"\n",
"* Can we assume the inputs are valid?\n",
" * No\n",
"* Is there a range of inputs?\n",
" * 0 <= item <= 100\n",
"* Should mean return a float?\n",
" * Yes\n",
"* Should the other results return an int?\n",
" * Yes\n",
"* If there are multiple modes, what do we return?\n",
" * Any of the modes\n",
"* Can we assume this fits memory?\n",
" * Yes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Cases\n",
"\n",
"* None -> TypeError\n",
"* [] -> ValueError\n",
"* [5, 2, 7, 9, 9, 2, 9, 4, 3, 3, 2]\n",
" * max: 9\n",
" * min: 2\n",
" * mean: 55\n",
" * mode: 9 or 2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Algorithm\n",
"\n",
"* We'll init our max and min to None. Alternatively, we can init them to -sys.maxsize and sys.maxsize, respectively.\n",
"* For mean, we'll keep track of the number of items we have inserted so far, as well as the running sum.\n",
"* For mode, we'll keep track of the current mode and an array with the size of the given upper limit\n",
" * Each element in the array will be init to 0\n",
" * Each time we insert, we'll increment the element corresponding to the inserted item's value\n",
"* On each insert:\n",
" * Update the max and min\n",
" * Update the mean by calculating running_sum / num_items\n",
" * Update the mode by comparing the mode array's value with the current mode\n",
"\n",
"Complexity:\n",
"* Time: O(1)\n",
"* Space: O(1), we are treating the 101 element array as a constant O(1), we could also see this as O(k)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Code"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from __future__ import division\n",
"\n",
"\n",
"class Solution(object):\n",
"\n",
" def __init__(self, upper_limit=100):\n",
" self.max = None\n",
" self.min = None\n",
" # Mean\n",
" self.num_items = 0\n",
" self.running_sum = 0\n",
" self.mean = None\n",
" # Mode\n",
" self.array = [0] * (upper_limit + 1)\n",
2017-05-16 12:30:12 +08:00
" self.mode_occurrences = 0\n",
2017-03-29 16:44:38 +08:00
" self.mode = None\n",
"\n",
" def insert(self, val):\n",
" if val is None:\n",
" raise TypeError('val cannot be None')\n",
" if self.max is None or val > self.max:\n",
" self.max = val\n",
" if self.min is None or val < self.min:\n",
" self.min = val\n",
" # Calculate the mean\n",
" self.num_items += 1\n",
" self.running_sum += val\n",
" self.mean = self.running_sum / self.num_items\n",
" # Calculate the mode\n",
" self.array[val] += 1\n",
2017-05-16 12:30:12 +08:00
" if self.array[val] > self.mode_occurrences:\n",
" self.mode_occurrences = self.array[val]\n",
2017-03-29 16:44:38 +08:00
" self.mode = val"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Unit Test"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting test_math_ops.py\n"
]
}
],
"source": [
"%%writefile test_math_ops.py\n",
"from nose.tools import assert_equal, assert_true, assert_raises\n",
"\n",
"\n",
"class TestMathOps(object):\n",
"\n",
" def test_math_ops(self):\n",
" solution = Solution()\n",
" assert_raises(TypeError, solution.insert, None)\n",
" solution.insert(5)\n",
" solution.insert(2)\n",
" solution.insert(7)\n",
" solution.insert(9)\n",
" solution.insert(9)\n",
" solution.insert(2)\n",
" solution.insert(9)\n",
" solution.insert(4)\n",
" solution.insert(3)\n",
" solution.insert(3)\n",
" solution.insert(2)\n",
" assert_equal(solution.max, 9)\n",
" assert_equal(solution.min, 2)\n",
" assert_equal(solution.mean, 5)\n",
" assert_true(solution.mode in (2, 9))\n",
" print('Success: test_math_ops')\n",
"\n",
"\n",
"def main():\n",
" test = TestMathOps()\n",
" test.test_math_ops()\n",
"\n",
"\n",
"if __name__ == '__main__':\n",
" main()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Success: test_math_ops\n"
]
}
],
"source": [
"%run -i test_math_ops.py"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.0"
}
},
"nbformat": 4,
"nbformat_minor": 0
}