interactive-coding-challenges/arrays_strings/group_items/group_ordered_challenge.ipynb

191 lines
4.9 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<small><i>This notebook was prepared by [Author](https://github.com/). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges).</i></small>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Challenge Notebook"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Problem: Implement a function that groups identical items based on their order in the list.\n",
"\n",
"* [Constraints](#Constraints)\n",
"* [Test Cases](#Test-Cases)\n",
"* [Algorithm](#Algorithm)\n",
"* [Code](#Code)\n",
"* [Unit Test](#Unit-Test)\n",
"* [Solution Notebook](#Solution-Notebook)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Constraints\n",
"\n",
"* Can we use extra data structures?\n",
" * Yes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Cases\n",
"\n",
"* group_ordered([1,2,1,3,2]) -> [1,1,2,2,3]\n",
"* group_ordered(['a','b','a') -> ['a','a','b']\n",
"* group_ordered([1,1,2,3,4,5,2,1]-> [1,1,1,2,2,3,4,5]\n",
"* group_ordered([]) -> []\n",
"* group_ordered([1]) -> [1]\n",
"* group_ordered(None) -> None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Algorithm\n",
"\n",
"Refer to the [solution notebook](https://github.com/donnemartin/interactive-coding-challenges/templates/foo_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Code"
]
},
{
"cell_type": "code",
2015-07-09 21:04:37 +08:00
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
2015-07-09 21:04:37 +08:00
"def make_order_list(list_in):\n",
" order_list = []\n",
" for item in list_in:\n",
" if item not in order_list:\n",
" order_list.append(item)\n",
" return order_list\n",
"\n",
"def group_ordered(list_in):\n",
2015-07-09 21:04:37 +08:00
" if list_in is None:\n",
" return None\n",
" order_list = make_order_list(list_in)\n",
" current = 0\n",
" for item in order_list:\n",
" search = current + 1\n",
" while True:\n",
" try:\n",
" if list_in[search] != item:\n",
" search += 1\n",
" else:\n",
" current += 1\n",
" list_in[current], list_in[search] = list_in[search], list_in[current]\n",
" search += 1\n",
" except IndexError:\n",
" break\n",
" return list_in"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Unit Test"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**The following unit test is expected to fail until you solve the challenge.**"
]
},
{
"cell_type": "code",
2015-07-09 21:04:37 +08:00
"execution_count": 6,
"metadata": {
"collapsed": false
},
2015-07-09 21:04:37 +08:00
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Success: test_foo\n"
]
}
],
"source": [
2015-07-09 21:04:37 +08:00
"# %load test_group_ordered.py\n",
"from nose.tools import assert_equal\n",
"\n",
"class TestFoo(object):\n",
"\n",
" def test_foo(self):\n",
" assert_equal(group_ordered(None), None)\n",
" assert_equal(group_ordered([]), [])\n",
" assert_equal(group_ordered([1]), [1])\n",
" assert_equal(group_ordered([1,2,1,3,2]),[1,1,2,2,3])\n",
" assert_equal(group_ordered(['a','b','a']),['a','a','b'])\n",
" assert_equal(group_ordered([1,1,2,3,4,5,2,1]),[1,1,1,2,2,3,4,5])\n",
" assert_equal(group_ordered([1,2,3,4,3,4]),[1,2,3,3,4,4])\n",
" print('Success: test_foo')\n",
"\n",
"def main():\n",
" test = TestFoo()\n",
" test.test_foo()\n",
"\n",
"if __name__ == '__main__':\n",
" main()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Solution Notebook\n",
"\n",
"Review the [solution notebook](https://github.com/donnemartin/interactive-coding-challenges/templates/foo_solution.ipynb) for a discussion on algorithms and code solutions."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}