2015-08-05 08:01:59 +08:00
{
" cells " : [
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
2016-07-31 20:11:18 +08:00
" This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). "
2015-08-05 08:01:59 +08:00
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" # Solution Notebook "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ## Problem: Implement depth-first search on a graph. \n " ,
" \n " ,
" * [Constraints](#Constraints) \n " ,
" * [Test Cases](#Test-Cases) \n " ,
" * [Algorithm](#Algorithm) \n " ,
" * [Code](#Code) \n " ,
" * [Unit Test](#Unit-Test) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ## Constraints \n " ,
" \n " ,
" * Is the graph directed? \n " ,
" * Yes \n " ,
" * Can we assume we already have Graph and Node classes? \n " ,
2016-06-28 16:35:29 +08:00
" * Yes \n " ,
2017-03-13 17:24:32 +08:00
" * Can we assume this is a connected graph? \n " ,
" * Yes \n " ,
2016-06-28 16:35:29 +08:00
" * Can we assume the inputs are valid? \n " ,
" * Yes \n " ,
" * Can we assume this fits memory? \n " ,
2015-08-05 08:01:59 +08:00
" * Yes "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ## Test Cases \n " ,
" \n " ,
" Input: \n " ,
" * `add_edge(source, destination, weight)` \n " ,
" \n " ,
" ``` \n " ,
" graph.add_edge(0, 1, 5) \n " ,
" graph.add_edge(0, 4, 3) \n " ,
" graph.add_edge(0, 5, 2) \n " ,
" graph.add_edge(1, 3, 5) \n " ,
" graph.add_edge(1, 4, 4) \n " ,
" graph.add_edge(2, 1, 6) \n " ,
" graph.add_edge(3, 2, 7) \n " ,
" graph.add_edge(3, 4, 8) \n " ,
" ``` \n " ,
" \n " ,
" Result: \n " ,
" * Order of nodes visited: [0, 1, 3, 2, 4, 5] "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ## Algorithm \n " ,
" \n " ,
" If we want to visit every node in a graph, we generally prefer depth-first search since it is simpler (no need to use a queue). For shortest path, we generally use breadth-first search. \n " ,
" \n " ,
" * Visit the current node and mark it visited \n " ,
" * Iterate through each adjacent node \n " ,
" * If the node has not been visited, call dfs on it \n " ,
" \n " ,
" Complexity: \n " ,
" * Time: O(V + E), where V = number of vertices and E = number of edges \n " ,
2016-11-15 18:17:28 +08:00
" * Space: O(V), for the recursion depth "
2015-08-05 08:01:59 +08:00
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ## Code "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 1 ,
" metadata " : {
" collapsed " : true
} ,
" outputs " : [ ] ,
" source " : [
" %r un ../graph/graph.py "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 2 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [ ] ,
" source " : [
2016-09-10 19:41:23 +08:00
" class GraphDfs(Graph): \n " ,
" \n " ,
" def dfs(self, root, visit_func): \n " ,
" if root is None: \n " ,
" return \n " ,
" visit_func(root) \n " ,
" root.visit_state = State.visited \n " ,
" for node in root.adj_nodes.values(): \n " ,
" if node.visit_state == State.unvisited: \n " ,
" self.dfs(node, visit_func) "
2015-08-05 08:01:59 +08:00
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ## Unit Test "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 3 ,
" metadata " : {
" collapsed " : true
} ,
" outputs " : [ ] ,
" source " : [
" %r un ../utils/results.py "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 4 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" Overwriting test_dfs.py \n "
]
}
] ,
" source " : [
" %% writefile test_dfs.py \n " ,
" from nose.tools import assert_equal \n " ,
" \n " ,
" \n " ,
" class TestDfs(object): \n " ,
" \n " ,
" def __init__(self): \n " ,
" self.results = Results() \n " ,
" \n " ,
" def test_dfs(self): \n " ,
" nodes = [] \n " ,
2016-09-10 19:41:23 +08:00
" graph = GraphDfs() \n " ,
2015-08-05 08:01:59 +08:00
" for id in range(0, 6): \n " ,
" nodes.append(graph.add_node(id)) \n " ,
" graph.add_edge(0, 1, 5) \n " ,
" graph.add_edge(0, 4, 3) \n " ,
" graph.add_edge(0, 5, 2) \n " ,
" graph.add_edge(1, 3, 5) \n " ,
" graph.add_edge(1, 4, 4) \n " ,
" graph.add_edge(2, 1, 6) \n " ,
" graph.add_edge(3, 2, 7) \n " ,
" graph.add_edge(3, 4, 8) \n " ,
2016-09-10 19:41:23 +08:00
" graph.dfs(nodes[0], self.results.add_result) \n " ,
2015-08-05 08:01:59 +08:00
" assert_equal(str(self.results), \" [0, 1, 3, 2, 4, 5] \" ) \n " ,
" \n " ,
" print( ' Success: test_dfs ' ) \n " ,
" \n " ,
" \n " ,
" def main(): \n " ,
" test = TestDfs() \n " ,
" test.test_dfs() \n " ,
" \n " ,
" \n " ,
" if __name__ == ' __main__ ' : \n " ,
" main() "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 5 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" Success: test_dfs \n "
]
}
] ,
" source " : [
" %r un -i test_dfs.py "
]
}
] ,
" metadata " : {
" kernelspec " : {
2016-06-28 16:35:29 +08:00
" display_name " : " Python 3 " ,
2015-08-05 08:01:59 +08:00
" language " : " python " ,
2016-06-28 16:35:29 +08:00
" name " : " python3 "
2015-08-05 08:01:59 +08:00
} ,
" language_info " : {
" codemirror_mode " : {
" name " : " ipython " ,
2016-06-28 16:35:29 +08:00
" version " : 3
2015-08-05 08:01:59 +08:00
} ,
" file_extension " : " .py " ,
" mimetype " : " text/x-python " ,
" name " : " python " ,
" nbconvert_exporter " : " python " ,
2016-06-28 16:35:29 +08:00
" pygments_lexer " : " ipython3 " ,
2017-03-13 17:24:32 +08:00
" version " : " 3.4.3 "
2015-08-05 08:01:59 +08:00
}
} ,
" nbformat " : 4 ,
" nbformat_minor " : 0
}