2015-08-03 18:24:38 +08:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<small><i>This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges).</i></small>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Challenge Notebook"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
2015-08-05 07:37:05 +08:00
"## Problem: Implement a graph.\n",
2015-08-03 18:24:38 +08:00
"\n",
"* [Constraints](#Constraints)\n",
"* [Test Cases](#Test-Cases)\n",
"* [Algorithm](#Algorithm)\n",
"* [Code](#Code)\n",
"* [Unit Test](#Unit-Test)\n",
"* [Solution Notebook](#Solution-Notebook)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Constraints\n",
"\n",
2015-08-04 20:09:16 +08:00
"* Is the graph directed?\n",
" * Yes\n",
"* Do the edges have weights?\n",
" * Yes"
2015-08-03 18:24:38 +08:00
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Cases\n",
"\n",
"Input:\n",
"* `add_edge(source, destination, weight)`\n",
"\n",
"```\n",
"graph.add_edge(0, 1, 5)\n",
"graph.add_edge(0, 5, 2)\n",
"graph.add_edge(1, 2, 3)\n",
"graph.add_edge(2, 3, 4)\n",
"graph.add_edge(3, 4, 5)\n",
"graph.add_edge(3, 5, 6)\n",
"graph.add_edge(4, 0, 7)\n",
"graph.add_edge(5, 4, 8)\n",
"graph.add_edge(5, 2, 9)\n",
"```\n",
"\n",
"Result:\n",
2015-08-05 07:37:05 +08:00
"* `source` and `destination` nodes within `graph` are connected with specified `weight`.\n",
"\n",
"Note: \n",
"* We'll be using an OrderedDict to make the outputs more consistent and simplify our testing.\n",
"* Graph will be used as a building block for more complex graph challenges."
2015-08-03 18:24:38 +08:00
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Algorithm\n",
"\n",
"Refer to the [Solution Notebook](https://github.com/donnemartin/interactive-coding-challenges/graphs_trees/graphs/graph_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Code"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
2015-08-05 07:37:05 +08:00
"from collections import OrderedDict\n",
2015-08-03 18:24:38 +08:00
"\n",
"\n",
"class Node:\n",
"\n",
" def __init__(self, id):\n",
" # TODO: Implement me\n",
2015-08-05 07:37:05 +08:00
" self.adjacent = OrderedDict() # key = node, val = weight\n",
2015-08-03 18:24:38 +08:00
"\n",
2015-08-05 18:14:44 +08:00
" def __str__(self):\n",
" return str(self.id)\n",
"\n",
2015-08-03 18:24:38 +08:00
"\n",
"class Graph:\n",
"\n",
" def __init__(self):\n",
" # TODO: Implement me\n",
2015-08-05 07:37:05 +08:00
" self.nodes = OrderedDict() # key = node id, val = node\n",
2015-08-03 18:24:38 +08:00
"\n",
" def add_node(self, id):\n",
" # TODO: Implement me\n",
2015-08-05 07:37:05 +08:00
" pass\n",
2015-08-03 18:24:38 +08:00
"\n",
" def add_edge(self, source, dest, weight=0):\n",
2015-08-05 07:37:05 +08:00
" # TODO: Implement me\n",
" pass"
2015-08-03 18:24:38 +08:00
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Unit Test"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**The following unit test is expected to fail until you solve the challenge.**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# %load test_graph.py\n",
"from nose.tools import assert_equal\n",
"\n",
"\n",
"class TestGraph(object):\n",
"\n",
" def test_graph(self):\n",
" graph = Graph()\n",
2015-08-05 07:37:05 +08:00
" for id in range(0, 6):\n",
" graph.add_node(id)\n",
2015-08-03 18:24:38 +08:00
" graph.add_edge(0, 1, 5)\n",
" graph.add_edge(0, 5, 2)\n",
" graph.add_edge(1, 2, 3)\n",
" graph.add_edge(2, 3, 4)\n",
" graph.add_edge(3, 4, 5)\n",
" graph.add_edge(3, 5, 6)\n",
" graph.add_edge(4, 0, 7)\n",
" graph.add_edge(5, 4, 8)\n",
" graph.add_edge(5, 2, 9)\n",
"\n",
2015-08-05 07:37:05 +08:00
" assert_equal(graph.nodes[0].adjacent[graph.nodes[1]], 5)\n",
" assert_equal(graph.nodes[0].adjacent[graph.nodes[5]], 2)\n",
" assert_equal(graph.nodes[1].adjacent[graph.nodes[2]], 3)\n",
" assert_equal(graph.nodes[2].adjacent[graph.nodes[3]], 4)\n",
" assert_equal(graph.nodes[3].adjacent[graph.nodes[4]], 5)\n",
" assert_equal(graph.nodes[3].adjacent[graph.nodes[5]], 6)\n",
" assert_equal(graph.nodes[4].adjacent[graph.nodes[0]], 7)\n",
" assert_equal(graph.nodes[5].adjacent[graph.nodes[4]], 8)\n",
" assert_equal(graph.nodes[5].adjacent[graph.nodes[2]], 9)\n",
2015-08-03 18:24:38 +08:00
"\n",
" print('Success: test_graph')\n",
"\n",
"\n",
"def main():\n",
" test = TestGraph()\n",
" test.test_graph()\n",
"\n",
"\n",
"if __name__ == '__main__':\n",
" main()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Solution Notebook\n",
"\n",
"Review the [Solution Notebook](https://github.com/donnemartin/interactive-coding-challenges/graphs_trees/graphs/graph_solution.ipynb) for a discussion on algorithms and code solutions."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 0
}