6e8fbca745
match the genesis editor version 1.3.0.653.
262 lines
9.2 KiB
C++
262 lines
9.2 KiB
C++
/*
|
|
-----------------------------------------------------------------------------
|
|
This source file is part of OGRE
|
|
(Object-oriented Graphics Rendering Engine)
|
|
For the latest info, see http://www.ogre3d.org/
|
|
|
|
Copyright (c) 2000-2009 Torus Knot Software Ltd
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
-----------------------------------------------------------------------------
|
|
*/
|
|
#ifndef __Matrix3_H__
|
|
#define __Matrix3_H__
|
|
|
|
#include "OgrePrerequisites.h"
|
|
|
|
#include "OgreVector3.h"
|
|
|
|
// NB All code adapted from Wild Magic 0.2 Matrix math (free source code)
|
|
// http://www.geometrictools.com/
|
|
|
|
// NOTE. The (x,y,z) coordinate system is assumed to be right-handed.
|
|
// Coordinate axis rotation matrices are of the form
|
|
// RX = 1 0 0
|
|
// 0 cos(t) -sin(t)
|
|
// 0 sin(t) cos(t)
|
|
// where t > 0 indicates a counterclockwise rotation in the yz-plane
|
|
// RY = cos(t) 0 sin(t)
|
|
// 0 1 0
|
|
// -sin(t) 0 cos(t)
|
|
// where t > 0 indicates a counterclockwise rotation in the zx-plane
|
|
// RZ = cos(t) -sin(t) 0
|
|
// sin(t) cos(t) 0
|
|
// 0 0 1
|
|
// where t > 0 indicates a counterclockwise rotation in the xy-plane.
|
|
|
|
namespace Ogre
|
|
{
|
|
/** \addtogroup Core
|
|
* @{
|
|
*/
|
|
/** \addtogroup Math
|
|
* @{
|
|
*/
|
|
/** A 3x3 matrix which can represent rotations around axes.
|
|
@note
|
|
<b>All the code is adapted from the Wild Magic 0.2 Matrix
|
|
library (http://www.geometrictools.com/).</b>
|
|
@par
|
|
The coordinate system is assumed to be <b>right-handed</b>.
|
|
*/
|
|
class Matrix3
|
|
{
|
|
public:
|
|
/** Default constructor.
|
|
@note
|
|
It does <b>NOT</b> initialize the matrix for efficiency.
|
|
*/
|
|
inline Matrix3 () {}
|
|
inline explicit Matrix3 (const Real arr[3][3])
|
|
{
|
|
memcpy(m,arr,9*sizeof(Real));
|
|
}
|
|
inline Matrix3 (const Matrix3& rkMatrix)
|
|
{
|
|
memcpy(m,rkMatrix.m,9*sizeof(Real));
|
|
}
|
|
Matrix3 (Real fEntry00, Real fEntry01, Real fEntry02,
|
|
Real fEntry10, Real fEntry11, Real fEntry12,
|
|
Real fEntry20, Real fEntry21, Real fEntry22)
|
|
{
|
|
m[0][0] = fEntry00;
|
|
m[0][1] = fEntry01;
|
|
m[0][2] = fEntry02;
|
|
m[1][0] = fEntry10;
|
|
m[1][1] = fEntry11;
|
|
m[1][2] = fEntry12;
|
|
m[2][0] = fEntry20;
|
|
m[2][1] = fEntry21;
|
|
m[2][2] = fEntry22;
|
|
}
|
|
|
|
/** Exchange the contents of this matrix with another.
|
|
*/
|
|
inline void swap(Matrix3& other)
|
|
{
|
|
std::swap(m[0][0], other.m[0][0]);
|
|
std::swap(m[0][1], other.m[0][1]);
|
|
std::swap(m[0][2], other.m[0][2]);
|
|
std::swap(m[1][0], other.m[1][0]);
|
|
std::swap(m[1][1], other.m[1][1]);
|
|
std::swap(m[1][2], other.m[1][2]);
|
|
std::swap(m[2][0], other.m[2][0]);
|
|
std::swap(m[2][1], other.m[2][1]);
|
|
std::swap(m[2][2], other.m[2][2]);
|
|
}
|
|
|
|
// member access, allows use of construct mat[r][c]
|
|
inline Real* operator[] (size_t iRow) const
|
|
{
|
|
return (Real*)m[iRow];
|
|
}
|
|
/*inline operator Real* ()
|
|
{
|
|
return (Real*)m[0];
|
|
}*/
|
|
Vector3 GetColumn (size_t iCol) const;
|
|
void SetColumn(size_t iCol, const Vector3& vec);
|
|
void FromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis);
|
|
|
|
// assignment and comparison
|
|
inline Matrix3& operator= (const Matrix3& rkMatrix)
|
|
{
|
|
memcpy(m,rkMatrix.m,9*sizeof(Real));
|
|
return *this;
|
|
}
|
|
bool operator== (const Matrix3& rkMatrix) const;
|
|
inline bool operator!= (const Matrix3& rkMatrix) const
|
|
{
|
|
return !operator==(rkMatrix);
|
|
}
|
|
|
|
// arithmetic operations
|
|
Matrix3 operator+ (const Matrix3& rkMatrix) const;
|
|
Matrix3 operator- (const Matrix3& rkMatrix) const;
|
|
Matrix3 operator* (const Matrix3& rkMatrix) const;
|
|
Matrix3 operator- () const;
|
|
|
|
// matrix * vector [3x3 * 3x1 = 3x1]
|
|
Vector3 operator* (const Vector3& rkVector) const;
|
|
|
|
// vector * matrix [1x3 * 3x3 = 1x3]
|
|
friend Vector3 operator* (const Vector3& rkVector,
|
|
const Matrix3& rkMatrix);
|
|
|
|
// matrix * scalar
|
|
Matrix3 operator* (Real fScalar) const;
|
|
|
|
// scalar * matrix
|
|
friend Matrix3 operator* (Real fScalar, const Matrix3& rkMatrix);
|
|
|
|
// utilities
|
|
Matrix3 Transpose () const;
|
|
bool Inverse (Matrix3& rkInverse, Real fTolerance = 1e-06) const;
|
|
Matrix3 Inverse (Real fTolerance = 1e-06) const;
|
|
Real Determinant () const;
|
|
|
|
// singular value decomposition
|
|
void SingularValueDecomposition (Matrix3& rkL, Vector3& rkS,
|
|
Matrix3& rkR) const;
|
|
void SingularValueComposition (const Matrix3& rkL,
|
|
const Vector3& rkS, const Matrix3& rkR);
|
|
|
|
// Gram-Schmidt orthonormalization (applied to columns of rotation matrix)
|
|
void Orthonormalize ();
|
|
|
|
// orthogonal Q, diagonal D, upper triangular U stored as (u01,u02,u12)
|
|
void QDUDecomposition (Matrix3& rkQ, Vector3& rkD,
|
|
Vector3& rkU) const;
|
|
|
|
Real SpectralNorm () const;
|
|
|
|
// matrix must be orthonormal
|
|
void ToAxisAngle (Vector3& rkAxis, Radian& rfAngle) const;
|
|
inline void ToAxisAngle (Vector3& rkAxis, Degree& rfAngle) const {
|
|
Radian r;
|
|
ToAxisAngle ( rkAxis, r );
|
|
rfAngle = r;
|
|
}
|
|
void FromAxisAngle (const Vector3& rkAxis, const Radian& fRadians);
|
|
|
|
// The matrix must be orthonormal. The decomposition is yaw*pitch*roll
|
|
// where yaw is rotation about the Up vector, pitch is rotation about the
|
|
// Right axis, and roll is rotation about the Direction axis.
|
|
bool ToEulerAnglesXYZ (Radian& rfYAngle, Radian& rfPAngle,
|
|
Radian& rfRAngle) const;
|
|
bool ToEulerAnglesXZY (Radian& rfYAngle, Radian& rfPAngle,
|
|
Radian& rfRAngle) const;
|
|
bool ToEulerAnglesYXZ (Radian& rfYAngle, Radian& rfPAngle,
|
|
Radian& rfRAngle) const;
|
|
bool ToEulerAnglesYZX (Radian& rfYAngle, Radian& rfPAngle,
|
|
Radian& rfRAngle) const;
|
|
bool ToEulerAnglesZXY (Radian& rfYAngle, Radian& rfPAngle,
|
|
Radian& rfRAngle) const;
|
|
bool ToEulerAnglesZYX (Radian& rfYAngle, Radian& rfPAngle,
|
|
Radian& rfRAngle) const;
|
|
void FromEulerAnglesXYZ (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
|
|
void FromEulerAnglesXZY (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
|
|
void FromEulerAnglesYXZ (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
|
|
void FromEulerAnglesYZX (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
|
|
void FromEulerAnglesZXY (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
|
|
void FromEulerAnglesZYX (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
|
|
// eigensolver, matrix must be symmetric
|
|
void EigenSolveSymmetric (Real afEigenvalue[3],
|
|
Vector3 akEigenvector[3]) const;
|
|
|
|
static void TensorProduct (const Vector3& rkU, const Vector3& rkV,
|
|
Matrix3& rkProduct);
|
|
|
|
/** Determines if this matrix involves a scaling. */
|
|
inline bool hasScale() const
|
|
{
|
|
// check magnitude of column vectors (==local axes)
|
|
Real t = m[0][0] * m[0][0] + m[1][0] * m[1][0] + m[2][0] * m[2][0];
|
|
if (!Math::RealEqual(t, 1.0, (Real)1e-04))
|
|
return true;
|
|
t = m[0][1] * m[0][1] + m[1][1] * m[1][1] + m[2][1] * m[2][1];
|
|
if (!Math::RealEqual(t, 1.0, (Real)1e-04))
|
|
return true;
|
|
t = m[0][2] * m[0][2] + m[1][2] * m[1][2] + m[2][2] * m[2][2];
|
|
if (!Math::RealEqual(t, 1.0, (Real)1e-04))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static const Real EPSILON;
|
|
static const Matrix3 ZERO;
|
|
static const Matrix3 IDENTITY;
|
|
|
|
protected:
|
|
// support for eigensolver
|
|
void Tridiagonal (Real afDiag[3], Real afSubDiag[3]);
|
|
bool QLAlgorithm (Real afDiag[3], Real afSubDiag[3]);
|
|
|
|
// support for singular value decomposition
|
|
static const Real ms_fSvdEpsilon;
|
|
static const unsigned int ms_iSvdMaxIterations;
|
|
static void Bidiagonalize (Matrix3& kA, Matrix3& kL,
|
|
Matrix3& kR);
|
|
static void GolubKahanStep (Matrix3& kA, Matrix3& kL,
|
|
Matrix3& kR);
|
|
|
|
// support for spectral norm
|
|
static Real MaxCubicRoot (Real afCoeff[3]);
|
|
|
|
Real m[3][3];
|
|
|
|
// for faster access
|
|
friend class Matrix4;
|
|
};
|
|
/** @} */
|
|
/** @} */
|
|
}
|
|
#endif
|