genesis-3d_engine/Engine/rendersystem/gles/RenderDeviceGLES.cc
zhongdaohuan 6e8fbca745 genesis-3d engine version 1.3.
match the genesis editor version 1.3.0.653.
2014-05-05 14:50:33 +08:00

877 lines
22 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/****************************************************************************
Copyright (c) 2011-2013,WebJet Business Division,CYOU
http://www.genesis-3d.com.cn
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
****************************************************************************/
#include "stdneb.h"
#ifdef __OSX__
#include "../../profilesystem/ProfileSystem.h"
#else
#include "profilesystem/ProfileSystem.h"
#endif
#include "RenderDeviceGLES.h"
#include "RenderSystem.h"
#include "PrimitiveGroupObjectGLES.h"
#include "GPUProgramGLES.h"
#include "TextureGLES.h"
#include "GLESTypes.h"
#include "RenderTargetGLES.h"
#define USE_NATIVE_WINDOW 1
//#define __GPU_REG_SET__TEST__
#ifdef __GPU_REG_SET__TEST__
#include "math/size.h"
typedef Math::tsize<int> couter__;
static const int reg_count__ = 1024;
static Util::Array<Math::float4> gpuregs__;
static Util::Array<couter__> redundant_calls__;
template<typename T>
void test_set_gpu_reg__(int reg_index, T* value, int count, int call_id__)
{
for(int x = 0; x < count; ++x)
{
T* reg = (T*)&gpuregs__[reg_index + x];
++redundant_calls__[reg_index + x].height;
if (*reg == *value)
{
++redundant_calls__[reg_index + x].width;
}
*reg = *value;
}
}
void test_clear_gpu_reg__()
{
gpuregs__.Clear(false);
redundant_calls__.Clear(false);
gpuregs__.Resize(reg_count__, Math::float4(0,0,0,0));
redundant_calls__.Resize(reg_count__, couter__(0,0));
}
# define __SET_GPU_REG__TEST(x, y, z, w) test_set_gpu_reg__(x, y, z, w)
# define __CLEAR_GPU_REG__TEST() test_clear_gpu_reg__()
#else
# define __SET_GPU_REG__TEST(x, y, z, w)
# define __CLEAR_GPU_REG__TEST()
#endif
namespace GLES
{
using namespace RenderBase;
__ImplementClass(GLES::RenderDeviceGLES,'GRDE',RenderBase::RenderDevice);
RenderDeviceGLES::RenderDeviceGLES()
: m_glesImpl(NULL)
{
#if USE_NATIVE_WINDOW && __WIN32__
m_activeContext = GLESContext::Create();
n_assert(m_activeContext);
#endif
for (IndexT i = 0; i < GLES::MaxTextureUnits; ++i)
{
m_Textures.Add(i, NULL);
}
#if __OSX__
m_mainFBOnum = 1;
#else
m_mainFBOnum = 0;
#endif
}
RenderDeviceGLES::~RenderDeviceGLES()
{
m_Textures.Clear();
if (m_glesImpl != NULL)
{
n_delete(m_glesImpl);
}
if (m_activeContext.isvalid())
{
m_activeContext = NULL;
}
}
bool RenderDeviceGLES::InitDevice()
{
#if USE_NATIVE_WINDOW && __WIN32__
if (m_activeContext.isvalid())
{
SizeT inMulsample = 0;
m_activeContext->InitContext(inMulsample);
}
else
{
return false;
}
#endif
m_glesImpl = GLESImpl::Create();
if (m_glesImpl != NULL)
{
m_glesImpl->Init();
}
else
{
return false;
}
for (int i = 0; i< GLES::MaxTextureUnits; ++i)
{
m_texturesTypes[i] = 0;
}
return true;
}
//------------------------------------------------------------------------
void RenderDeviceGLES::DetectGraphicCardCaps()
{
#if RENDERDEVICE_OPENGLES
m_graphicCardCaps.DetectGraphicCardCapsGLES20();
#endif
}
//------------------------------------------------------------------------
const GraphicCardCapability&
RenderDeviceGLES::GetGraphicCardCapability()
{
return m_graphicCardCaps;
}
//------------------------------------------------------------------------
float RenderDeviceGLES::GetHorizontalTexelOffset(void)
{
// No offset in GL
return 0.0f;
}
float RenderDeviceGLES::GetVerticalTexelOffset(void)
{
// No offset in GL
return 0.0f;
}
float RenderDeviceGLES::GetMinimumDepthInputValue()
{
// Range [-1.0f, 1.0f]
return -1.0f;
}
float RenderDeviceGLES::GetMaximumDepthInputValue()
{
// Range [-1.0f, 1.0f]
return 1.0f;
}
GPtr<PrimitiveGroup> RenderDeviceGLES::CreatePrimitiveGroup(const VertexBufferData* vbd, const IndexBufferData* ibd)
{
n_assert(NULL != vbd);
GPtr<PrimitiveGroupObjectGLES> prim = PrimitiveGroupObjectGLES::Create();
prim->LoadBuffers(vbd, ibd);
return prim.upcast<PrimitiveGroup>();
}
void RenderDeviceGLES::UpdateVertexBuffer(VertexBuffer* vb, const DataStream& data)
{
n_assert(vb);
VertexBufferObjectGLES* vbgl = _Convert<VertexBuffer, VertexBufferObjectGLES>(vb);
vbgl->UpdateData(data);
}
void RenderDeviceGLES::UpdateIndexBuffer(IndexBuffer* ib, const DataStream& data)
{
n_assert(ib);
IndexBufferObjectGLES* ibgl = _Convert<IndexBuffer, IndexBufferObjectGLES>(ib);
ibgl->UpdateData(data);
}
const GPtr<GPUProgram> RenderDeviceGLES::CreateRenderGPUProgram(const GPtr<GPUProgram>& srcGPUProgram)
{
GPtr<GPUProgramGLES> pGPUProgramGLES = GPUProgramGLES::Create();
pGPUProgramGLES->SetCodePath(srcGPUProgram->GetCodePath());
pGPUProgramGLES->SetVertexCode(srcGPUProgram->GetVertexCode());
pGPUProgramGLES->SetPixelCode(srcGPUProgram->GetPixelCode());
pGPUProgramGLES->LoadBuffers();
m_pGPUProgramGLES = pGPUProgramGLES;
return pGPUProgramGLES.upcast<GPUProgram>();
}
const GPtr<RenderStateDesc> RenderDeviceGLES::CreateRenderState(const GPtr<RenderStateDesc>& state)
{
GPtr<RenderStateDesc> rsObject = RenderStateDesc::Create();
rsObject->Setup();
rsObject->SetBlendState(state->GetBlendState());
rsObject->SetSamplerState(state->GetSamplerState());
rsObject->SetDepthAndStencilState(state->GetDepthAndStencilState());
rsObject->SetRasterizerState(state->GetRasterizerState());
rsObject->SetUpdateFlag(state->GetUpdateFlag());
return rsObject;
}
void RenderDeviceGLES::ChangePrimitiveGroup(PrimitiveGroup* group, const RenderBase::VertexBufferData* vbd, const RenderBase::IndexBufferData* ibd /* = NULL */)
{
PrimitiveGroupObjectGLES* pggl = static_cast<PrimitiveGroupObjectGLES*>(group);
if (vbd)
{
pggl->DiscardVertexBuffer();
}
if (ibd)
{
pggl->DiscardIndexBuffer();
}
pggl->LoadBuffers(vbd, ibd);
}
const GPtr<Texture> RenderDeviceGLES::CreateRenderSideTexture( GPtr<Texture> tex)
{
GPtr<TextureGLES> texture = TextureGLES::Create();
texture->Setup(tex);
texture->LoadBuffers();
texture->SetStream(NULL);
return texture.upcast<Texture>();
}
void RenderDeviceGLES::SetBlendState(const DeviceBlendState& state)
{
int i = 0;
m_glesImpl->SetColorMask( state.m_colorWriteMask[i] );
const GraphicCardCapability& caps = GetGraphicCardCapability();
#if RENDERDEVICE_OPENGLES
if (caps.mSeparateAplhaBlend)
{
if( state.m_alphaBlendEnable[i] )
{
m_glesImpl->ActiveAlphaBlend(true);
m_glesImpl->SetBlendFuncSeparate( GLESTypes::AsGLESBlendFactor( state.m_srcBlend[i] ), GLESTypes::AsGLESBlendFactor( state.m_destBlend[i] ),
GLESTypes::AsGLESBlendFactor( state.m_srcBlendAlpha[i] ), GLESTypes::AsGLESBlendFactor( state.m_destBlendAlpha[i] ) );
m_glesImpl->SetBlendEquationSeparate( GLESTypes::AsGLESBlendOperation( state.m_blendOP[i] ) ,
GLESTypes::AsGLESBlendOperation( state.m_blendOPAlpha[i] ) );
}
else
{
m_glesImpl->ActiveAlphaBlend(false);
}
}
else
{
if(true == state.m_alphaBlendEnable[i])
{
m_glesImpl->ActiveAlphaBlend(true);
m_glesImpl->SetBlendFunc(GLESTypes::AsGLESBlendFactor( state.m_srcBlend[i] ), GLESTypes::AsGLESBlendFactor( state.m_destBlend[i] ));
m_glesImpl->SetBlendEquation( GLESTypes::AsGLESBlendOperation( state.m_blendOP[i] ) );
}
else
{
m_glesImpl->ActiveAlphaBlend(false);
}
}
#endif
}
void RenderDeviceGLES::SetRasterState(const DeviceRasterizerState& state)
{
m_glesImpl->SetCullMode( state.m_cullMode );
m_glesImpl->SetPolyOffset(state.m_slopScaleDepthBias, state.m_depthBias );
m_glesImpl->ActiveScissorTest( state.m_scissorTestEnable );
}
void RenderDeviceGLES::SetDepthAndStencilState(const DeviceDepthAndStencilState& state)
{
//depth
if (state.m_depthEnable)
{
m_glesImpl->ActiveDepthTest(true);
m_glesImpl->SetDepthFunc( GLESTypes::AsGLESCompareFunction(state.m_zFunc) );
}
else
{
m_glesImpl->ActiveDepthTest(false);
}
m_glesImpl->SetDepthWrite( state.m_depthWriteMask );
#if RENDERDEVICE_OPENGLES
const GraphicCardCapability& caps = GetGraphicCardCapability();
bool stencilSeparate = caps.mStencilTwoSize && state.m_stencilTwoEnable;
if ( state.m_stencilEnable )
{
m_glesImpl->ActiveStencilTest(true);
if ( stencilSeparate )
{
m_glesImpl->SetStencilFuncSeparate( GLESTypes::AsGLESCompareFunction( state.m_stencilFunc),
state.m_stencilRef, state.m_stencilReadMask,
GLESTypes::AsGLESCompareFunction( state.m_StencilTwoFunc),
state.m_stencilRef, state.m_stencilTwoReadMask );
m_glesImpl->SetStencilOpSeparate( GLESTypes::AsGLESStencilOperation(state.m_stencilFail),
GLESTypes::AsGLESStencilOperation(state.m_stencilZFail),
GLESTypes::AsGLESStencilOperation(state.m_stencilPass),
GLESTypes::AsGLESStencilOperation(state.m_stencilTwoFail),
GLESTypes::AsGLESStencilOperation(state.m_stencilTwoZFail),
GLESTypes::AsGLESStencilOperation(state.m_stencilTwoPass) );
}
else
{
m_glesImpl->SetStencilFunc( GLESTypes::AsGLESCompareFunction( state.m_stencilFunc),
state.m_stencilRef, state.m_stencilReadMask );
m_glesImpl->SetStencilOp( GLESTypes::AsGLESStencilOperation(state.m_stencilFail),
GLESTypes::AsGLESStencilOperation(state.m_stencilZFail),
GLESTypes::AsGLESStencilOperation(state.m_stencilPass) );
}
}
else
{
m_glesImpl->ActiveStencilTest(false);
}
if ( caps.mStencilTwoSize )
{
m_glesImpl->SetStencilMaskSeparate( state.m_stencilWriteMask, state.m_stencilTwoWriteMask);
}
else
{
m_glesImpl->SetStencilMask( state.m_stencilWriteMask );
}
#endif
}
void RenderDeviceGLES::SetTextureSamplerState(const DeviceSamplerState& state)
{
for (SizeT i = 0; i < 8; ++i)
{
if (state.m_textureIndexEnable[i])
{
m_glesImpl->ActiveTextureUnit(i);
const Util::String& type = state.m_textureType[i];
GLenum textueType = GLESTypes::AsGLESTextureType(type);
IndexT addresU, addresV, texOp;
bool bMipMap = false;
if (m_Textures[i])
{
addresU = m_Textures[i]->GetTexAddresingModeU();
addresV = m_Textures[i]->GetTexAddresingModeV();
texOp = m_Textures[i]->GetTexFilterOp();
if (addresU != state.m_addressU[i])
{
m_glesImpl->SetTextureWrapMode(textueType, GL_TEXTURE_WRAP_S, state.m_addressU[i]);
m_Textures[i]->SetTexAddresingModeU((IndexT)(state.m_addressU[i]));
}
if (addresV != state.m_addressV[i])
{
m_glesImpl->SetTextureWrapMode(textueType, GL_TEXTURE_WRAP_T, state.m_addressV[i]);
m_Textures[i]->SetTexAddresingModeV((IndexT)(state.m_addressV[i]));
}
bMipMap = m_Textures[i]->IsUseMipMap();
if (texOp != state.m_Filter[i])
{
m_glesImpl->SetTextureFilter(textueType, state.m_Filter[i], bMipMap);
m_Textures[i]->SetTexFilterOp((IndexT)(state.m_Filter[i]));
}
}
m_glesImpl->CheckError();
}
}
m_glesImpl->ActiveTextureUnit(0);
}
void RenderDeviceGLES::SetVertexLayout(const VertexLayout* vl)
{
}
void RenderDeviceGLES::SetStreamSource(IndexT streamIndex, const VertexBuffer* vb, IndexT offsetVertexIndex)
{
}
void RenderDeviceGLES::SetIndexBuffer(const IndexBuffer* ib)
{
n_assert (ib)
const IndexBufferObjectGLES* pIB = _Convert<IndexBuffer, IndexBufferObjectGLES>(ib);
GLuint bufferID = pIB->GetGLESIndexBuffer();
m_glesImpl->ActiveIndexBufferObject(bufferID);
}
void RenderDeviceGLES::SetPrimitiveGroup(const PrimitiveGroup* pg)
{
m_primitiveGroupGLES = _Convert<PrimitiveGroup, PrimitiveGroupObjectGLES>(pg);
const GPtr<VertexBuffer>& pVB = m_primitiveGroupGLES->GetVertexBuffer();
const GPtr<IndexBuffer>& pIB = m_primitiveGroupGLES->GetIndexBuffer();
const GPtr<VertexBufferObjectGLES>& pVBGLES = pVB.downcast<VertexBufferObjectGLES>();
if (pVBGLES.isvalid())
{
pVBGLES->BindingVertexLayout(m_pGPUProgramGLES);
if (pIB.isvalid())
{
SetIndexBuffer(pIB);
}
}
}
void RenderDeviceGLES::SetTexture(const Texture* tex)
{
n_assert(tex)
const TextureGLES* texture = _Convert<Texture, TextureGLES>(tex);
int texUnit = texture->GetUnitIndex();
if (texUnit < GLES::MaxTextureUnits)
{
GLenum lastTextureType = m_texturesTypes[texUnit];
m_glesImpl->ActiveTextureUnit(texUnit);
Texture::Type texType = tex->GetType();
GLenum target = GLESTypes::AsGLESTextureType(texType);
GLuint texGLES = texture->GetGLESTexture();
m_glesImpl->ActiveTextureObject(target, texGLES);
const IndexT texLoc = m_pGPUProgramGLES->GetTextureUniformLocation(texUnit);
glUniform1i(texLoc, texUnit);
m_glesImpl->CheckError();
m_glesImpl->ActiveTextureUnit(0);
m_Textures[texUnit] = const_cast<TextureGLES*>(texture);
}
}
void RenderDeviceGLES::ChangeTexture(GPtr<Texture> srcTex, GPtr<Texture> destTex)
{
GPtr<TextureGLES> destTexGL = destTex.downcast<TextureGLES>();
n_assert(destTexGL.isvalid());
destTexGL->Unload();
destTexGL->Setup(srcTex);
destTexGL->LoadBuffers();
destTexGL->SetStream(NULL);
}
void RenderDeviceGLES::UpdateTexture(RenderBase::Texture::UpdateFunction texUpdateFunc, GPtr<Texture> destTex, void* tag)
{
const GPtr<TextureGLES>& destTexGles = destTex.downcast<TextureGLES>();
n_assert(destTexGles.isvalid());
destTexGles->UpdateTexture(texUpdateFunc, tag);
}
void RenderDeviceGLES::UpdateTexture(GPtr<Texture> srcTex, GPtr<Texture> destTex)
{
const GPtr<TextureGLES>& destTexGles = destTex.downcast<TextureGLES>();
n_assert(destTexGles.isvalid())
//GLESĿǰ<C4BF><C7B0><EFBFBD><EFBFBD>ֻ<EFBFBD><D6BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><E8B1B8>ʧ<EFBFBD><CAA7><EFBFBD><EFBFBD><EFBFBD>´<EFBFBD><C2B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
destTexGles->SetStream( srcTex->GetStream() );
destTexGles->LoadBuffers();
destTexGles->SetStream( NULL );
}
void RenderDeviceGLES::SetViewPort(const int &x, const int &y, const int &width, const int &height, const float &minZ, const float &maxZ)
{
glViewport(x, y, width, height);
m_glesImpl->CheckError();
}
void RenderDeviceGLES::SetGPUProgram(const GPUProgram* program)
{
n_assert(program);
const GPUProgramGLES* pFragmentGLES = _Convert<GPUProgram, GPUProgramGLES>(program);
if (m_pGPUProgramGLES != pFragmentGLES)
{
if (m_pGPUProgramGLES)
{
m_pGPUProgramGLES->UnbindProgram();
}
m_pGPUProgramGLES = pFragmentGLES;
}
m_pGPUProgramGLES->BindProgram();
}
void RenderDeviceGLES::Draw(SizeT startVertice,SizeT numVertice,SizeT startIndice,SizeT numIndice)
{
#if RENDERDEVICE_OPENGLES
GLenum glPrimType = GLESTypes::AsGLESPrimitiveType(m_primitiveGroupGLES->GetPrimitiveTopology());
n_assert(m_primitiveGroupGLES->GetNumVertices() >= numVertice && m_primitiveGroupGLES->GetNumVertices() >= startVertice)
n_assert(m_primitiveGroupGLES->GetNumIndices() >= numIndice && m_primitiveGroupGLES->GetNumIndices() >= startIndice)
SizeT numTris = 0;
if (m_primitiveGroupGLES->GetNumIndices() > 0)
{
numTris = m_primitiveGroupGLES->NumberOfPrimitives( m_primitiveGroupGLES->GetPrimitiveTopology(), numIndice );
const GPtr<IndexBuffer>& pIB = m_primitiveGroupGLES->GetIndexBuffer();
IndexBufferData::IndexType indexType = pIB->GetIndexType();
const RenderBase::GraphicCardCapability& caps = RenderBase::RenderSystem::Instance()->GetGraphicCardCapability();
if (indexType == IndexBufferData::Int32 && !caps.mIndexUint)
{
n_warning("The Device Can Not Support GL_UNSIGNED_INT Index Type! \n");
return;
}
GLenum indexTypeGLES = GLESTypes::IndexTypeAsGLESFormat( indexType );
SizeT indexSize = IndexBufferData::SizeOf(indexType);
glDrawElements(glPrimType,
numIndice,
indexTypeGLES,
(char *)NULL + startIndice * indexSize
);
m_glesImpl->CheckError();
}
else
{
glDrawArrays(glPrimType, startVertice, numVertice);
m_glesImpl->CheckError();
}
const GPtr<VertexBuffer>& pVB = m_primitiveGroupGLES->GetVertexBuffer();
const Util::Dictionary<VertexComponent::Semantic, Attribute>& attributes = m_pGPUProgramGLES->GetActiveAttributes();
for (IndexT i = 0; i < attributes.Size(); ++i)
{
glDisableVertexAttribArray(attributes.ValueAtIndex(i).location);
}
m_glesImpl->ActiveVertexBufferObject(0);
m_glesImpl->ActiveIndexBufferObject(0);
PROFILER_ADDDEVICESTATEVAL( tris, numTris );
PROFILER_ADDDEVICESTATEVAL( calls, 1 );
PROFILER_ADDDEVICESTATEVAL( verts, numVertice );
#endif
}
bool RenderDeviceGLES::BeginFrame()
{
#if USE_NATIVE_WINDOW && __WIN32__
if (m_activeContext.isvalid())
{
m_activeContext->BeginFrame();
}
else
{
return false;
}
#endif
m_glesImpl->ActiveVertexBufferObject(0);
m_glesImpl->ActiveIndexBufferObject(0);
__CLEAR_GPU_REG__TEST();
return Super::BeginFrame();
}
void RenderDeviceGLES::EndFrame()
{
m_glesImpl->ActiveShaderProgram(0);
m_glesImpl->ActiveFrameBuffer(m_mainFBOnum);
m_glesImpl->ActiveTextureUnit(0);
m_bDeviceLost = false;
Super::EndFrame();
}
void RenderDeviceGLES::Present(WindHandle hwnd)
{
#if USE_NATIVE_WINDOW && __WIN32__
if (m_activeContext.isvalid())
{
m_activeContext->EndFrame();
}
else
{
return;
}
#endif
}
void RenderDeviceGLES::SetVertexShaderConstantVectorF(const int& reg, float* val, const int& vec4count)
{
__SET_GPU_REG__TEST(reg, (Math::float4*)val, 1, 400);
glUniform4fv(reg, vec4count, val);
m_glesImpl->CheckError();
}
void RenderDeviceGLES::SetPixelShaderConstantVectorF(const int& reg, float* val, const int& vec4count)
{
}
void RenderDeviceGLES::SetVertexShaderConstantFloat(const int& reg, float* val)
{
__SET_GPU_REG__TEST(reg, val, 1, 100);
glUniform1f(reg, *val);
m_glesImpl->CheckError();
}
void RenderDeviceGLES::SetPixelShaderConstantFloat(const int& reg, float* val)
{
}
void RenderDeviceGLES::SetVertexShaderConstantMatrixF(const int& reg, float* val, const int& matrixCount)
{
if (matrixCount == 1)
{
Math::matrix44* mat = (Math::matrix44*)val;
Math::matrix44 transposed = Math::matrix44::transpose(*mat);
__SET_GPU_REG__TEST(reg, &transposed, 1, 1600);
glUniformMatrix4fv(reg, matrixCount, GL_FALSE, (float*)&transposed);
m_glesImpl->CheckError();
}
else
{
__SET_GPU_REG__TEST(reg, (Math::matrix44*)val, matrixCount, 1600 * matrixCount);
glUniformMatrix4fv(reg, matrixCount, GL_FALSE, val);
m_glesImpl->CheckError();
}
}
void RenderDeviceGLES::SetPixelShaderConstantMatrixF(const int& reg, float* val, const int& matrixCount)
{
}
bool RenderDeviceGLES::OnDeviceLost()
{
m_glesImpl->ActiveFrameBuffer(0);
glClearColor(0.2f, 0.2f, 0.2f, 0.2f);
glClear(GL_COLOR_BUFFER_BIT);
m_glesImpl->ResetGLState();
return true;
}
bool RenderDeviceGLES::CheckReset()
{
return true;
}
bool RenderDeviceGLES::OnDeviceReset()
{
return true;
}
void RenderDeviceGLES::SetRenderTarget(RenderTarget* rt)
{
n_assert (rt)
const RenderTargetGLES* pRTGLES = _Convert<RenderTarget, RenderTargetGLES>(rt);
GLbitfield mask = 0;
const GLESFrameBuf& fbo = pRTGLES->GetRenderTargetGLES();
if (!pRTGLES->IsDefaultRenderTarget())
{
_UnbindBuffer();
m_glesImpl->ActiveFrameBuffer(fbo.FrameBuf);
}
else
{
m_glesImpl->ActiveFrameBuffer(m_mainFBOnum);
mask |= GL_DEPTH_BUFFER_BIT;
mask |= GL_STENCIL_BUFFER_BIT;
}
uint clearFlags = pRTGLES->GetClearFlags();
if (clearFlags & RenderTarget::ClearColor)
{
mask |= GL_COLOR_BUFFER_BIT;
}
if (pRTGLES->HasDepthStencilBuffer())
{
if (clearFlags & RenderTarget::ClearDepth)
{
mask |= GL_DEPTH_BUFFER_BIT;
}
if (clearFlags & RenderTarget::ClearStencil)
{
mask |= GL_STENCIL_BUFFER_BIT;
}
}
if (mask != 0)
{
const Math::float4& color = pRTGLES->GetClearColor();
glClearColor(color.x(), color.y(), color.z(), color.w());
m_glesImpl->CheckError();
GLboolean bDepthMask = GL_FALSE;
glGetBooleanv(GL_DEPTH_WRITEMASK, &bDepthMask);
glDepthMask(GL_TRUE);
m_glesImpl->CheckError();
glClear(mask);
m_glesImpl->CheckError();
glDepthMask(bDepthMask);
m_glesImpl->CheckError();
}
}
void RenderDeviceGLES::SetMultipleRenderTarget(const MultipleRenderTarget* mrt, bool resume /* = false */)
{
}
const GPtr<RenderTarget> RenderDeviceGLES::CreateRenderTarget(const GPtr<RenderTarget>& rt)
{
GPtr<RenderTargetGLES> rtGLES = RenderTargetGLES::Create();
n_assert(rtGLES.isvalid());
rtGLES->SetWidth(rt->GetWidth());
rtGLES->SetHeight(rt->GetHeight());
rtGLES->SetAntiAliasQuality(rt->GetAntiAliasQuality());
rtGLES->SetColorBufferFormat(rt->GetColorBufferFormat());
rtGLES->SetMipMapsEnabled(rt->AreMipMapsEnabled());
rtGLES->SetClearFlags(rt->GetClearFlags());
rtGLES->SetClearColor(rt->GetClearColor());
rtGLES->SetClearStencil(rt->GetClearStencil());
rtGLES->SetClearDepth(rt->GetClearDepth());
rtGLES->SetMRTIndex(rt->GetMRTIndex());
if (rt->HasDepthStencilBuffer())
{
rtGLES->AddDepthStencilBuffer();
}
rtGLES->SetScreenSizeRatio(rt->GetScreenSizeRatio());
rtGLES->SetDefaultRenderTarget(rt->IsDefaultRenderTarget());
if (rt->IsAttachedToMRT())
{
rtGLES->AttachToMRT();
}
rtGLES->LoadBuffers(rt->GetWidth(), rt->GetHeight());
rtGLES->AssignGLESTextures();
return rtGLES.upcast<RenderTarget>();
}
const GPtr<MultipleRenderTarget> RenderDeviceGLES::CreateMultipleRenderTarget(const GPtr<MultipleRenderTarget> &mrt)
{
return NULL;
}
void RenderDeviceGLES::DrawIndexedInstanced(SizeT numInstances)
{
}
void RenderDeviceGLES::FXSetClipPlane(const int &index, const Math::float4 &plane)
{
}
void RenderDeviceGLES::DisableRenderTarget(int index)
{
}
void RenderDeviceGLES::_UnbindBuffer()
{
m_glesImpl->ActiveFrameBuffer(m_mainFBOnum);
for (IndexT i = 0; i < GLES::MaxTextureUnits; ++i)
{
m_glesImpl->ActiveTextureUnit(i);
m_glesImpl->ActiveTextureObject(GL_TEXTURE_2D, 0);
}
m_glesImpl->ActiveTextureUnit(0);
}
RenderBase::RenderWindow* RenderDeviceGLES::CreateRenderWindow(WindHandle hWnd)
{
return new GLESWindow(this, hWnd );
}
void RenderDeviceGLES::DestroyRenderWindow(RenderBase::RenderWindow* rw)
{
delete rw;
}
}