6e8fbca745
match the genesis editor version 1.3.0.653.
208 lines
6.1 KiB
C++
208 lines
6.1 KiB
C++
/****************************************************************************
|
|
Copyright (c) 2004, Radon Labs GmbH
|
|
Copyright (c) 2011-2013,WebJet Business Division,CYOU
|
|
|
|
http://www.genesis-3d.com.cn
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
****************************************************************************/
|
|
#include "stdneb.h"
|
|
#include "math/sphere_.h" // avoid confilct with ODE sphere.h
|
|
|
|
namespace Math
|
|
{
|
|
|
|
//------------------------------------------------------------------------------
|
|
/**
|
|
Check if sphere intersects with box.
|
|
Taken from "Simple Intersection Tests For Games",
|
|
Gamasutra, Oct 18 1999
|
|
*/
|
|
bool
|
|
sphere::intersects(const bbox& box) const
|
|
{
|
|
n_error("sphere::intersects(): NOT IMPLEMENTED!");
|
|
return false;
|
|
/*
|
|
float s, d = 0;
|
|
|
|
// find the square of the distance
|
|
// from the sphere to the box,
|
|
if (p.x < box.vmin.x)
|
|
{
|
|
s = p.x - box.vmin.x;
|
|
d += s*s;
|
|
}
|
|
else if (p.x > box.vmax.x)
|
|
{
|
|
s = p.x - box.vmax.x;
|
|
d += s*s;
|
|
}
|
|
|
|
if (p.y < box.vmin.y)
|
|
{
|
|
s = p.y - box.vmin.y;
|
|
d += s*s;
|
|
}
|
|
else if (p.y > box.vmax.y)
|
|
{
|
|
s = p.y - box.vmax.y;
|
|
d += s*s;
|
|
}
|
|
|
|
if (p.z < box.vmin.z)
|
|
{
|
|
s = p.z - box.vmin.z;
|
|
d += s*s;
|
|
}
|
|
else if (p.z > box.vmax.z)
|
|
{
|
|
s = p.z - box.vmax.z;
|
|
d += s*s;
|
|
}
|
|
|
|
return d <= r*r;
|
|
*/
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
/**
|
|
Check if 2 moving spheres have contact.
|
|
Taken from "Simple Intersection Tests For Games"
|
|
article in Gamasutra, Oct 18 1999
|
|
|
|
@param va [in] distance travelled by 'this'
|
|
@param sb [in] the other sphere
|
|
@param vb [in] distance travelled by sb
|
|
@param u0 [out] normalized intro contact
|
|
@param u1 [out] normalized outro contact
|
|
*/
|
|
bool
|
|
sphere::intersect_sweep(const vector& va, const sphere& sb, const vector& vb, float& u0, float& u1) const
|
|
{
|
|
n_error("sphere::intersect_sweep(): NOT IMPLEMENTED!");
|
|
return false;
|
|
|
|
/*
|
|
vector3 vab(vb - va);
|
|
vector3 ab(sb.p - p);
|
|
float rab = r + sb.r;
|
|
|
|
// check if spheres are currently overlapping...
|
|
if ((ab % ab) <= (rab * rab))
|
|
{
|
|
u0 = 0.0f;
|
|
u1 = 0.0f;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
// check if they hit each other
|
|
float a = vab % vab;
|
|
if ((a < -TINY) || (a > +TINY))
|
|
{
|
|
// if a is '0' then the objects don't move relative to each other
|
|
float b = (vab % ab) * 2.0f;
|
|
float c = (ab % ab) - (rab * rab);
|
|
float q = b*b - 4*a*c;
|
|
if (q >= 0.0f)
|
|
{
|
|
// 1 or 2 contacts
|
|
float sq = (float) sqrt(q);
|
|
float d = 1.0f / (2.0f*a);
|
|
float r1 = (-b + sq) * d;
|
|
float r2 = (-b - sq) * d;
|
|
if (r1 < r2)
|
|
{
|
|
u0 = r1;
|
|
u1 = r2;
|
|
}
|
|
else
|
|
{
|
|
u0 = r2;
|
|
u1 = r1;
|
|
}
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
*/
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
/**
|
|
Project the sphere (defined in global space) to a screen space rectangle,
|
|
given the current View and Projection matrices. The method assumes that
|
|
the sphere is at least partially visible.
|
|
*/
|
|
rectangle<scalar>
|
|
sphere::project_screen_rh(const matrix44& view, const matrix44& projection, float nearZ) const
|
|
{
|
|
n_error("sphere::project_screen_rh(): NOT IMPLEMENTED!");
|
|
return rectangle<scalar>(0, 0, 0, 0);
|
|
/*
|
|
// compute center point of the sphere in view space
|
|
vector3 viewPos = view * this->p;
|
|
if (viewPos.z > -nearZ)
|
|
{
|
|
viewPos.z = -nearZ;
|
|
}
|
|
vector3 screenPos = projection.mult_divw(viewPos);
|
|
screenPos.y = -screenPos.y;
|
|
|
|
// compute size of sphere at its front size
|
|
float frontZ = viewPos.z + this->r;
|
|
if (frontZ > -nearZ)
|
|
{
|
|
frontZ = -nearZ;
|
|
}
|
|
vector3 screenSize = projection.mult_divw(vector3(this->r, this->r, frontZ));
|
|
screenSize.y = -screenSize.y;
|
|
float left = n_saturate(0.5f * (1.0f + (screenPos.x - screenSize.x)));
|
|
float right = n_saturate(0.5f * (1.0f + (screenPos.x + screenSize.x)));
|
|
float top = n_saturate(0.5f * (1.0f + (screenPos.y + screenSize.y)));
|
|
float bottom = n_saturate(0.5f * (1.0f + (screenPos.y - screenSize.y)));
|
|
|
|
return rectangle(vector2(left, top), vector2(right, bottom));
|
|
*/
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
/**
|
|
*/
|
|
void sphere::transform(const matrix44& m)
|
|
{
|
|
p = matrix44::transform(m, p);
|
|
float num4 = ((m.mx[0][0] * m.mx[0][0]) + (m.mx[1][0] * m.mx[1][0])) + (m.mx[2][0] * m.mx[2][0]);
|
|
float num3 = ((m.mx[0][1] * m.mx[0][1]) + (m.mx[1][1] * m.mx[1][1])) + (m.mx[2][1] * m.mx[2][1]);
|
|
float num2 = ((m.mx[0][2] * m.mx[0][2]) + (m.mx[1][2] * m.mx[1][2])) + (m.mx[2][2] * m.mx[2][2]);
|
|
float num = n_max(num4, n_max(num3, num2));
|
|
r = r * ((float)n_sqrt(num));
|
|
}
|
|
|
|
} // namespace Math
|