genesis-3d_engine/Engine/foundation/math/OgreMath/OgreQuaternion.h
zhongdaohuan 6e8fbca745 genesis-3d engine version 1.3.
match the genesis editor version 1.3.0.653.
2014-05-05 14:50:33 +08:00

268 lines
9.0 KiB
C++
Raw Permalink Blame History

/*
-----------------------------------------------------------------------------
This source file is part of OGRE
(Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/
Copyright (c) 2000-2009 Torus Knot Software Ltd
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
// This file is based on material originally from:
// Geometric Tools, LLC
// Copyright (c) 1998-2010
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
#ifndef __Quaternion_H__
#define __Quaternion_H__
#include "OgrePrerequisites.h"
#include "OgreMath.h"
namespace Ogre {
/** \addtogroup Core
* @{
*/
/** \addtogroup Math
* @{
*/
/** Implementation of a Quaternion, i.e. a rotation around an axis.
*/
class Quaternion
{
public:
inline Quaternion (
Real fW = 1.0,
Real fX = 0.0, Real fY = 0.0, Real fZ = 0.0)
{
w = fW;
x = fX;
y = fY;
z = fZ;
}
/// Construct a quaternion from a rotation matrix
inline Quaternion(const Matrix3& rot)
{
this->FromRotationMatrix(rot);
}
/// Construct a quaternion from an angle/axis
inline Quaternion(const Radian& rfAngle, const Vector3& rkAxis)
{
this->FromAngleAxis(rfAngle, rkAxis);
}
/// Construct a quaternion from 3 orthonormal local axes
inline Quaternion(const Vector3& xaxis, const Vector3& yaxis, const Vector3& zaxis)
{
this->FromAxes(xaxis, yaxis, zaxis);
}
/// Construct a quaternion from 3 orthonormal local axes
inline Quaternion(const Vector3* akAxis)
{
this->FromAxes(akAxis);
}
/// Construct a quaternion from 4 manual w/x/y/z values
inline Quaternion(Real* valptr)
{
memcpy(&w, valptr, sizeof(Real)*4);
}
/** Exchange the contents of this quaternion with another.
*/
inline void swap(Quaternion& other)
{
std::swap(w, other.w);
std::swap(x, other.x);
std::swap(y, other.y);
std::swap(z, other.z);
}
/// Array accessor operator
inline Real operator [] ( const size_t i ) const
{
assert( i < 4 );
return *(&w+i);
}
/// Array accessor operator
inline Real& operator [] ( const size_t i )
{
assert( i < 4 );
return *(&w+i);
}
/// Pointer accessor for direct copying
inline Real* ptr()
{
return &w;
}
/// Pointer accessor for direct copying
inline const Real* ptr() const
{
return &w;
}
void FromRotationMatrix (const Matrix3& kRot);
void ToRotationMatrix (Matrix3& kRot) const;
void FromAngleAxis (const Radian& rfAngle, const Vector3& rkAxis);
void ToAngleAxis (Radian& rfAngle, Vector3& rkAxis) const;
inline void ToAngleAxis (Degree& dAngle, Vector3& rkAxis) const {
Radian rAngle;
ToAngleAxis ( rAngle, rkAxis );
dAngle = rAngle;
}
void FromAxes (const Vector3* akAxis);
void FromAxes (const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis);
void ToAxes (Vector3* akAxis) const;
void ToAxes (Vector3& xAxis, Vector3& yAxis, Vector3& zAxis) const;
/// Get the local x-axis
Vector3 xAxis(void) const;
/// Get the local y-axis
Vector3 yAxis(void) const;
/// Get the local z-axis
Vector3 zAxis(void) const;
Quaternion CalRollPitchYaw( float roll , float pitch , float yaw );
inline Quaternion& operator= (const Quaternion& rkQ)
{
w = rkQ.w;
x = rkQ.x;
y = rkQ.y;
z = rkQ.z;
return *this;
}
Quaternion operator+ (const Quaternion& rkQ) const;
Quaternion operator- (const Quaternion& rkQ) const;
Quaternion operator* (const Quaternion& rkQ) const;
Quaternion operator* (Real fScalar) const;
friend Quaternion operator* (Real fScalar,
const Quaternion& rkQ);
Quaternion operator- () const;
inline bool operator== (const Quaternion& rhs) const
{
return (rhs.x == x) && (rhs.y == y) &&
(rhs.z == z) && (rhs.w == w);
}
inline bool operator!= (const Quaternion& rhs) const
{
return !operator==(rhs);
}
// functions of a quaternion
Real Dot (const Quaternion& rkQ) const; // dot product
Real Norm () const; // squared-length
/// Normalises this quaternion, and returns the previous length
Real normalise(void);
Quaternion Inverse () const; // apply to non-zero quaternion
Quaternion UnitInverse () const; // apply to unit-length quaternion
Quaternion Exp () const;
Quaternion Log () const;
// rotation of a vector by a quaternion
Vector3 operator* (const Vector3& rkVector) const;
/** Calculate the local roll element of this quaternion.
@param reprojectAxis By default the method returns the 'intuitive' result
that is, if you projected the local Y of the quaternion onto the X and
Y axes, the angle between them is returned. If set to false though, the
result is the actual yaw that will be used to implement the quaternion,
which is the shortest possible path to get to the same orientation and
may involve less axial rotation.
*/
Radian getRoll(bool reprojectAxis = true) const;
/** Calculate the local pitch element of this quaternion
@param reprojectAxis By default the method returns the 'intuitive' result
that is, if you projected the local Z of the quaternion onto the X and
Y axes, the angle between them is returned. If set to true though, the
result is the actual yaw that will be used to implement the quaternion,
which is the shortest possible path to get to the same orientation and
may involve less axial rotation.
*/
Radian getPitch(bool reprojectAxis = true) const;
/** Calculate the local yaw element of this quaternion
@param reprojectAxis By default the method returns the 'intuitive' result
that is, if you projected the local Z of the quaternion onto the X and
Z axes, the angle between them is returned. If set to true though, the
result is the actual yaw that will be used to implement the quaternion,
which is the shortest possible path to get to the same orientation and
may involve less axial rotation.
*/
Radian getYaw(bool reprojectAxis = true) const;
/// Equality with tolerance (tolerance is max angle difference)
bool equals(const Quaternion& rhs, const Radian& tolerance) const;
/// get the yaw <20><>pitch <20><>roll in order XYZ
void GetYawPitchRoll(Radian& yaw, Radian& pitch, Radian& roll) const;
// spherical linear interpolation
static Quaternion Slerp (Real fT, const Quaternion& rkP,
const Quaternion& rkQ, bool shortestPath = false);
static Quaternion SlerpExtraSpins (Real fT,
const Quaternion& rkP, const Quaternion& rkQ,
int iExtraSpins);
// setup for spherical quadratic interpolation
static void Intermediate (const Quaternion& rkQ0,
const Quaternion& rkQ1, const Quaternion& rkQ2,
Quaternion& rka, Quaternion& rkB);
// spherical quadratic interpolation
static Quaternion Squad (Real fT, const Quaternion& rkP,
const Quaternion& rkA, const Quaternion& rkB,
const Quaternion& rkQ, bool shortestPath = false);
// normalised linear interpolation - faster but less accurate (non-constant rotation velocity)
static Quaternion nlerp(Real fT, const Quaternion& rkP,
const Quaternion& rkQ, bool shortestPath = false);
// cutoff for sine near zero
static const Real ms_fEpsilon;
// special values
static const Quaternion ZERO;
static const Quaternion IDENTITY;
Real w, x, y, z;
/// Check whether this quaternion contains valid values
inline bool isNaN() const
{
return Math::isNaN(x) || Math::isNaN(y) || Math::isNaN(z) || Math::isNaN(w);
}
};
/** @} */
/** @} */
}
#endif