6e8fbca745
match the genesis editor version 1.3.0.653.
396 lines
10 KiB
C++
396 lines
10 KiB
C++
// This code contains NVIDIA Confidential Information and is disclosed to you
|
|
// under a form of NVIDIA software license agreement provided separately to you.
|
|
//
|
|
// Notice
|
|
// NVIDIA Corporation and its licensors retain all intellectual property and
|
|
// proprietary rights in and to this software and related documentation and
|
|
// any modifications thereto. Any use, reproduction, disclosure, or
|
|
// distribution of this software and related documentation without an express
|
|
// license agreement from NVIDIA Corporation is strictly prohibited.
|
|
//
|
|
// ALL NVIDIA DESIGN SPECIFICATIONS, CODE ARE PROVIDED "AS IS.". NVIDIA MAKES
|
|
// NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO
|
|
// THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
|
|
// MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// Information and code furnished is believed to be accurate and reliable.
|
|
// However, NVIDIA Corporation assumes no responsibility for the consequences of use of such
|
|
// information or for any infringement of patents or other rights of third parties that may
|
|
// result from its use. No license is granted by implication or otherwise under any patent
|
|
// or patent rights of NVIDIA Corporation. Details are subject to change without notice.
|
|
// This code supersedes and replaces all information previously supplied.
|
|
// NVIDIA Corporation products are not authorized for use as critical
|
|
// components in life support devices or systems without express written approval of
|
|
// NVIDIA Corporation.
|
|
//
|
|
// Copyright (c) 2008-2013 NVIDIA Corporation. All rights reserved.
|
|
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
|
|
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
|
|
|
|
|
|
#ifndef PX_FOUNDATION_PX_MAT33_H
|
|
#define PX_FOUNDATION_PX_MAT33_H
|
|
/** \addtogroup foundation
|
|
@{
|
|
*/
|
|
|
|
#include "foundation/PxVec3.h"
|
|
#include "foundation/PxQuat.h"
|
|
|
|
#ifndef PX_DOXYGEN
|
|
namespace physx
|
|
{
|
|
#endif
|
|
/*!
|
|
\brief 3x3 matrix class
|
|
|
|
Some clarifications, as there have been much confusion about matrix formats etc in the past.
|
|
|
|
Short:
|
|
- Matrix have base vectors in columns (vectors are column matrices, 3x1 matrices).
|
|
- Matrix is physically stored in column major format
|
|
- Matrices are concaternated from left
|
|
|
|
Long:
|
|
Given three base vectors a, b and c the matrix is stored as
|
|
|
|
|a.x b.x c.x|
|
|
|a.y b.y c.y|
|
|
|a.z b.z c.z|
|
|
|
|
Vectors are treated as columns, so the vector v is
|
|
|
|
|x|
|
|
|y|
|
|
|z|
|
|
|
|
And matrices are applied _before_ the vector (pre-multiplication)
|
|
v' = M*v
|
|
|
|
|x'| |a.x b.x c.x| |x| |a.x*x + b.x*y + c.x*z|
|
|
|y'| = |a.y b.y c.y| * |y| = |a.y*x + b.y*y + c.y*z|
|
|
|z'| |a.z b.z c.z| |z| |a.z*x + b.z*y + c.z*z|
|
|
|
|
|
|
Physical storage and indexing:
|
|
To be compatible with popular 3d rendering APIs (read D3d and OpenGL)
|
|
the physical indexing is
|
|
|
|
|0 3 6|
|
|
|1 4 7|
|
|
|2 5 8|
|
|
|
|
index = column*3 + row
|
|
|
|
which in C++ translates to M[column][row]
|
|
|
|
The mathematical indexing is M_row,column and this is what is used for _-notation
|
|
so _12 is 1st row, second column and operator(row, column)!
|
|
|
|
*/
|
|
class PxMat33
|
|
{
|
|
public:
|
|
//! Default constructor
|
|
PX_CUDA_CALLABLE PX_INLINE PxMat33()
|
|
{}
|
|
|
|
//! Construct from three base vectors
|
|
PX_CUDA_CALLABLE PxMat33(const PxVec3& col0, const PxVec3& col1, const PxVec3& col2)
|
|
: column0(col0), column1(col1), column2(col2)
|
|
{}
|
|
|
|
//! Construct from float[9]
|
|
PX_CUDA_CALLABLE explicit PX_INLINE PxMat33(PxReal values[]):
|
|
column0(values[0],values[1],values[2]),
|
|
column1(values[3],values[4],values[5]),
|
|
column2(values[6],values[7],values[8])
|
|
{
|
|
}
|
|
|
|
//! Construct from a quaternion
|
|
PX_CUDA_CALLABLE explicit PX_FORCE_INLINE PxMat33(const PxQuat& q)
|
|
{
|
|
const PxReal x = q.x;
|
|
const PxReal y = q.y;
|
|
const PxReal z = q.z;
|
|
const PxReal w = q.w;
|
|
|
|
const PxReal x2 = x + x;
|
|
const PxReal y2 = y + y;
|
|
const PxReal z2 = z + z;
|
|
|
|
const PxReal xx = x2*x;
|
|
const PxReal yy = y2*y;
|
|
const PxReal zz = z2*z;
|
|
|
|
const PxReal xy = x2*y;
|
|
const PxReal xz = x2*z;
|
|
const PxReal xw = x2*w;
|
|
|
|
const PxReal yz = y2*z;
|
|
const PxReal yw = y2*w;
|
|
const PxReal zw = z2*w;
|
|
|
|
column0 = PxVec3(1.0f - yy - zz, xy + zw, xz - yw);
|
|
column1 = PxVec3(xy - zw, 1.0f - xx - zz, yz + xw);
|
|
column2 = PxVec3(xz + yw, yz - xw, 1.0f - xx - yy);
|
|
}
|
|
|
|
//! Copy constructor
|
|
PX_CUDA_CALLABLE PX_INLINE PxMat33(const PxMat33& other)
|
|
: column0(other.column0), column1(other.column1), column2(other.column2)
|
|
{}
|
|
|
|
//! Assignment operator
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxMat33& operator=(const PxMat33& other)
|
|
{
|
|
column0 = other.column0;
|
|
column1 = other.column1;
|
|
column2 = other.column2;
|
|
return *this;
|
|
}
|
|
|
|
//! Set to identity matrix
|
|
PX_CUDA_CALLABLE PX_INLINE static PxMat33 createIdentity()
|
|
{
|
|
return PxMat33(PxVec3(1,0,0), PxVec3(0,1,0), PxVec3(0,0,1));
|
|
}
|
|
|
|
//! Set to zero matrix
|
|
PX_CUDA_CALLABLE PX_INLINE static PxMat33 createZero()
|
|
{
|
|
return PxMat33(PxVec3(0.0f), PxVec3(0.0f), PxVec3(0.0f));
|
|
}
|
|
|
|
//! Construct from diagonal, off-diagonals are zero.
|
|
PX_CUDA_CALLABLE PX_INLINE static PxMat33 createDiagonal(const PxVec3& d)
|
|
{
|
|
return PxMat33(PxVec3(d.x,0.0f,0.0f), PxVec3(0.0f,d.y,0.0f), PxVec3(0.0f,0.0f,d.z));
|
|
}
|
|
|
|
|
|
//! Get transposed matrix
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxMat33 getTranspose() const
|
|
{
|
|
const PxVec3 v0(column0.x, column1.x, column2.x);
|
|
const PxVec3 v1(column0.y, column1.y, column2.y);
|
|
const PxVec3 v2(column0.z, column1.z, column2.z);
|
|
|
|
return PxMat33(v0,v1,v2);
|
|
}
|
|
|
|
//! Get the real inverse
|
|
PX_CUDA_CALLABLE PX_INLINE PxMat33 getInverse() const
|
|
{
|
|
const PxReal det = getDeterminant();
|
|
PxMat33 inverse;
|
|
|
|
if(det != 0)
|
|
{
|
|
const PxReal invDet = 1.0f/det;
|
|
|
|
inverse.column0[0] = invDet * (column1[1]*column2[2] - column2[1]*column1[2]);
|
|
inverse.column0[1] = invDet *-(column0[1]*column2[2] - column2[1]*column0[2]);
|
|
inverse.column0[2] = invDet * (column0[1]*column1[2] - column0[2]*column1[1]);
|
|
|
|
inverse.column1[0] = invDet *-(column1[0]*column2[2] - column1[2]*column2[0]);
|
|
inverse.column1[1] = invDet * (column0[0]*column2[2] - column0[2]*column2[0]);
|
|
inverse.column1[2] = invDet *-(column0[0]*column1[2] - column0[2]*column1[0]);
|
|
|
|
inverse.column2[0] = invDet * (column1[0]*column2[1] - column1[1]*column2[0]);
|
|
inverse.column2[1] = invDet *-(column0[0]*column2[1] - column0[1]*column2[0]);
|
|
inverse.column2[2] = invDet * (column0[0]*column1[1] - column1[0]*column0[1]);
|
|
|
|
return inverse;
|
|
}
|
|
else
|
|
{
|
|
return createIdentity();
|
|
}
|
|
}
|
|
|
|
//! Get determinant
|
|
PX_CUDA_CALLABLE PX_INLINE PxReal getDeterminant() const
|
|
{
|
|
return column0.dot(column1.cross(column2));
|
|
}
|
|
|
|
//! Unary minus
|
|
PX_CUDA_CALLABLE PX_INLINE PxMat33 operator-() const
|
|
{
|
|
return PxMat33(-column0, -column1, -column2);
|
|
}
|
|
|
|
//! Add
|
|
PX_CUDA_CALLABLE PX_INLINE PxMat33 operator+(const PxMat33& other) const
|
|
{
|
|
return PxMat33( column0+other.column0,
|
|
column1+other.column1,
|
|
column2+other.column2);
|
|
}
|
|
|
|
//! Subtract
|
|
PX_CUDA_CALLABLE PX_INLINE PxMat33 operator-(const PxMat33& other) const
|
|
{
|
|
return PxMat33( column0-other.column0,
|
|
column1-other.column1,
|
|
column2-other.column2);
|
|
}
|
|
|
|
//! Scalar multiplication
|
|
PX_CUDA_CALLABLE PX_INLINE PxMat33 operator*(PxReal scalar) const
|
|
{
|
|
return PxMat33(column0*scalar, column1*scalar, column2*scalar);
|
|
}
|
|
|
|
friend PxMat33 operator*(PxReal, const PxMat33&);
|
|
|
|
//! Matrix vector multiplication (returns 'this->transform(vec)')
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec3 operator*(const PxVec3& vec) const
|
|
{
|
|
return transform(vec);
|
|
}
|
|
|
|
//! Matrix multiplication
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxMat33 operator*(const PxMat33& other) const
|
|
{
|
|
//Rows from this <dot> columns from other
|
|
//column0 = transform(other.column0) etc
|
|
return PxMat33(transform(other.column0), transform(other.column1), transform(other.column2));
|
|
}
|
|
|
|
// a <op>= b operators
|
|
|
|
//! Equals-add
|
|
PX_CUDA_CALLABLE PX_INLINE PxMat33& operator+=(const PxMat33& other)
|
|
{
|
|
column0 += other.column0;
|
|
column1 += other.column1;
|
|
column2 += other.column2;
|
|
return *this;
|
|
}
|
|
|
|
//! Equals-sub
|
|
PX_CUDA_CALLABLE PX_INLINE PxMat33& operator-=(const PxMat33& other)
|
|
{
|
|
column0 -= other.column0;
|
|
column1 -= other.column1;
|
|
column2 -= other.column2;
|
|
return *this;
|
|
}
|
|
|
|
//! Equals scalar multiplication
|
|
PX_CUDA_CALLABLE PX_INLINE PxMat33& operator*=(PxReal scalar)
|
|
{
|
|
column0 *= scalar;
|
|
column1 *= scalar;
|
|
column2 *= scalar;
|
|
return *this;
|
|
}
|
|
|
|
//! Element access, mathematical way!
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal operator()(unsigned int row, unsigned int col) const
|
|
{
|
|
return (*this)[col][row];
|
|
}
|
|
|
|
//! Element access, mathematical way!
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal& operator()(unsigned int row, unsigned int col)
|
|
{
|
|
return (*this)[col][row];
|
|
}
|
|
|
|
// Transform etc
|
|
|
|
//! Transform vector by matrix, equal to v' = M*v
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 transform(const PxVec3& other) const
|
|
{
|
|
return column0*other.x + column1*other.y + column2*other.z;
|
|
}
|
|
|
|
//! Transform vector by matrix transpose, v' = M^t*v
|
|
PX_CUDA_CALLABLE PX_INLINE PxVec3 transformTranspose(const PxVec3& other) const
|
|
{
|
|
return PxVec3( column0.dot(other),
|
|
column1.dot(other),
|
|
column2.dot(other));
|
|
}
|
|
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE const PxReal* front() const
|
|
{
|
|
return &column0.x;
|
|
}
|
|
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator[](int num) {return (&column0)[num];}
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3& operator[](int num) const {return (&column0)[num];}
|
|
|
|
//Data, see above for format!
|
|
|
|
PxVec3 column0, column1, column2; //the three base vectors
|
|
};
|
|
|
|
// implementation from PxQuat.h
|
|
PX_CUDA_CALLABLE PX_INLINE PxQuat::PxQuat(const PxMat33& m)
|
|
{
|
|
PxReal tr = m(0,0) + m(1,1) + m(2,2), h;
|
|
if(tr >= 0)
|
|
{
|
|
h = PxSqrt(tr +1);
|
|
w = PxReal(0.5) * h;
|
|
h = PxReal(0.5) / h;
|
|
|
|
x = (m(2,1) - m(1,2)) * h;
|
|
y = (m(0,2) - m(2,0)) * h;
|
|
z = (m(1,0) - m(0,1)) * h;
|
|
}
|
|
else
|
|
{
|
|
int i = 0;
|
|
if (m(1,1) > m(0,0))
|
|
i = 1;
|
|
if (m(2,2) > m(i,i))
|
|
i = 2;
|
|
switch (i)
|
|
{
|
|
case 0:
|
|
h = PxSqrt((m(0,0) - (m(1,1) + m(2,2))) + 1);
|
|
x = PxReal(0.5) * h;
|
|
h = PxReal(0.5) / h;
|
|
|
|
y = (m(0,1) + m(1,0)) * h;
|
|
z = (m(2,0) + m(0,2)) * h;
|
|
w = (m(2,1) - m(1,2)) * h;
|
|
break;
|
|
case 1:
|
|
h = PxSqrt((m(1,1) - (m(2,2) + m(0,0))) + 1);
|
|
y = PxReal(0.5) * h;
|
|
h = PxReal(0.5) / h;
|
|
|
|
z = (m(1,2) + m(2,1)) * h;
|
|
x = (m(0,1) + m(1,0)) * h;
|
|
w = (m(0,2) - m(2,0)) * h;
|
|
break;
|
|
case 2:
|
|
h = PxSqrt((m(2,2) - (m(0,0) + m(1,1))) + 1);
|
|
z = PxReal(0.5) * h;
|
|
h = PxReal(0.5) / h;
|
|
|
|
x = (m(2,0) + m(0,2)) * h;
|
|
y = (m(1,2) + m(2,1)) * h;
|
|
w = (m(1,0) - m(0,1)) * h;
|
|
break;
|
|
default: // Make compiler happy
|
|
x = y = z = w = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef PX_DOXYGEN
|
|
} // namespace physx
|
|
#endif
|
|
|
|
/** @} */
|
|
#endif // PX_FOUNDATION_PX_MAT33_H
|