/* ----------------------------------------------------------------------------- This source file is part of OGRE (Object-oriented Graphics Rendering Engine) For the latest info, see http://www.ogre3d.org/ Copyright (c) 2000-2009 Torus Knot Software Ltd Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------------- */ #ifndef __Vector4_H__ #define __Vector4_H__ #include "OgrePrerequisites.h" #include "OgreVector3.h" namespace Ogre { /** \addtogroup Core * @{ */ /** \addtogroup Math * @{ */ /** 4-dimensional homogeneous vector. */ class Vector4 { public: Real x, y, z, w; public: inline Vector4() { } inline Vector4( const Real fX, const Real fY, const Real fZ, const Real fW ) : x( fX ), y( fY ), z( fZ ), w( fW) { } inline explicit Vector4( const Real afCoordinate[4] ) : x( afCoordinate[0] ), y( afCoordinate[1] ), z( afCoordinate[2] ), w( afCoordinate[3] ) { } inline explicit Vector4( const int afCoordinate[4] ) { x = (Real)afCoordinate[0]; y = (Real)afCoordinate[1]; z = (Real)afCoordinate[2]; w = (Real)afCoordinate[3]; } inline explicit Vector4( Real* const r ) : x( r[0] ), y( r[1] ), z( r[2] ), w( r[3] ) { } inline explicit Vector4( const Real scaler ) : x( scaler ) , y( scaler ) , z( scaler ) , w( scaler ) { } inline explicit Vector4(const Vector3& rhs) : x(rhs.x), y(rhs.y), z(rhs.z), w(1.0f) { } /** Exchange the contents of this vector with another. */ inline void swap(Vector4& other) { std::swap(x, other.x); std::swap(y, other.y); std::swap(z, other.z); std::swap(w, other.w); } inline Real operator [] ( const size_t i ) const { assert( i < 4 ); return *(&x+i); } inline Real& operator [] ( const size_t i ) { assert( i < 4 ); return *(&x+i); } /// Pointer accessor for direct copying inline Real* ptr() { return &x; } /// Pointer accessor for direct copying inline const Real* ptr() const { return &x; } /** Assigns the value of the other vector. @param rkVector The other vector */ inline Vector4& operator = ( const Vector4& rkVector ) { x = rkVector.x; y = rkVector.y; z = rkVector.z; w = rkVector.w; return *this; } inline Vector4& operator = ( const Real fScalar) { x = fScalar; y = fScalar; z = fScalar; w = fScalar; return *this; } inline bool operator == ( const Vector4& rkVector ) const { return ( x == rkVector.x && y == rkVector.y && z == rkVector.z && w == rkVector.w ); } inline bool operator != ( const Vector4& rkVector ) const { return ( x != rkVector.x || y != rkVector.y || z != rkVector.z || w != rkVector.w ); } inline Vector4& operator = (const Vector3& rhs) { x = rhs.x; y = rhs.y; z = rhs.z; w = 1.0f; return *this; } // arithmetic operations inline Vector4 operator + ( const Vector4& rkVector ) const { return Vector4( x + rkVector.x, y + rkVector.y, z + rkVector.z, w + rkVector.w); } inline Vector4 operator - ( const Vector4& rkVector ) const { return Vector4( x - rkVector.x, y - rkVector.y, z - rkVector.z, w - rkVector.w); } inline Vector4 operator * ( const Real fScalar ) const { return Vector4( x * fScalar, y * fScalar, z * fScalar, w * fScalar); } inline Vector4 operator * ( const Vector4& rhs) const { return Vector4( rhs.x * x, rhs.y * y, rhs.z * z, rhs.w * w); } inline Vector4 operator / ( const Real fScalar ) const { assert( fScalar != 0.0 ); Real fInv = 1.0f / fScalar; return Vector4( x * fInv, y * fInv, z * fInv, w * fInv); } inline Vector4 operator / ( const Vector4& rhs) const { return Vector4( x / rhs.x, y / rhs.y, z / rhs.z, w / rhs.w); } inline const Vector4& operator + () const { return *this; } inline Vector4 operator - () const { return Vector4(-x, -y, -z, -w); } inline friend Vector4 operator * ( const Real fScalar, const Vector4& rkVector ) { return Vector4( fScalar * rkVector.x, fScalar * rkVector.y, fScalar * rkVector.z, fScalar * rkVector.w); } inline friend Vector4 operator / ( const Real fScalar, const Vector4& rkVector ) { return Vector4( fScalar / rkVector.x, fScalar / rkVector.y, fScalar / rkVector.z, fScalar / rkVector.w); } inline friend Vector4 operator + (const Vector4& lhs, const Real rhs) { return Vector4( lhs.x + rhs, lhs.y + rhs, lhs.z + rhs, lhs.w + rhs); } inline friend Vector4 operator + (const Real lhs, const Vector4& rhs) { return Vector4( lhs + rhs.x, lhs + rhs.y, lhs + rhs.z, lhs + rhs.w); } inline friend Vector4 operator - (const Vector4& lhs, Real rhs) { return Vector4( lhs.x - rhs, lhs.y - rhs, lhs.z - rhs, lhs.w - rhs); } inline friend Vector4 operator - (const Real lhs, const Vector4& rhs) { return Vector4( lhs - rhs.x, lhs - rhs.y, lhs - rhs.z, lhs - rhs.w); } // arithmetic updates inline Vector4& operator += ( const Vector4& rkVector ) { x += rkVector.x; y += rkVector.y; z += rkVector.z; w += rkVector.w; return *this; } inline Vector4& operator -= ( const Vector4& rkVector ) { x -= rkVector.x; y -= rkVector.y; z -= rkVector.z; w -= rkVector.w; return *this; } inline Vector4& operator *= ( const Real fScalar ) { x *= fScalar; y *= fScalar; z *= fScalar; w *= fScalar; return *this; } inline Vector4& operator += ( const Real fScalar ) { x += fScalar; y += fScalar; z += fScalar; w += fScalar; return *this; } inline Vector4& operator -= ( const Real fScalar ) { x -= fScalar; y -= fScalar; z -= fScalar; w -= fScalar; return *this; } inline Vector4& operator *= ( const Vector4& rkVector ) { x *= rkVector.x; y *= rkVector.y; z *= rkVector.z; w *= rkVector.w; return *this; } inline Vector4& operator /= ( const Real fScalar ) { assert( fScalar != 0.0 ); Real fInv = 1.0f / fScalar; x *= fInv; y *= fInv; z *= fInv; w *= fInv; return *this; } inline Vector4& operator /= ( const Vector4& rkVector ) { x /= rkVector.x; y /= rkVector.y; z /= rkVector.z; w /= rkVector.w; return *this; } /** Calculates the dot (scalar) product of this vector with another. @param vec Vector with which to calculate the dot product (together with this one). @returns A float representing the dot product value. */ inline Real dotProduct(const Vector4& vec) const { return x * vec.x + y * vec.y + z * vec.z + w * vec.w; } /// Check whether this vector contains valid values inline bool isNaN() const { return Math::isNaN(x) || Math::isNaN(y) || Math::isNaN(z) || Math::isNaN(w); } // special static const Vector4 ZERO; }; /** @} */ /** @} */ } #endif