/* ----------------------------------------------------------------------------- This source file is part of OGRE (Object-oriented Graphics Rendering Engine) For the latest info, see http://www.ogre3d.org/ Copyright (c) 2000-2009 Torus Knot Software Ltd Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------------- */ #include "stdneb.h" #include "memory/memory.h" #include "OgreMath.h" #include "asm_math.h" #include "OgreVector3.h" #include "OgreVector4.h" namespace Ogre { const Real Math::POS_INFINITY = std::numeric_limits::infinity(); const Real Math::NEG_INFINITY = -std::numeric_limits::infinity(); const Real Math::OGRE_PI = Real( 4.0 * atan( 1.0 ) ); const Real Math::TWO_PI = Real( 2.0 * OGRE_PI ); const Real Math::HALF_PI = Real( 0.5 * OGRE_PI ); const Real Math::fDeg2Rad = OGRE_PI / Real(180.0); const Real Math::fRad2Deg = Real(180.0) / OGRE_PI; const Real Math::LOG2 = log(Real(2.0)); int Math::mTrigTableSize; Math::AngleUnit Math::msAngleUnit; Real Math::mTrigTableFactor; Real *Math::mSinTable = NULL; Real *Math::mTanTable = NULL; //----------------------------------------------------------------------- Math::Math( unsigned int trigTableSize ) { msAngleUnit = AU_DEGREE; mTrigTableSize = trigTableSize; mTrigTableFactor = mTrigTableSize / Math::TWO_PI; mSinTable = n_new_array(float, mTrigTableSize); mTanTable = n_new_array(float, mTrigTableSize); buildTrigTables(); } //----------------------------------------------------------------------- Math::~Math() { n_delete_array(mSinTable); n_delete_array(mTanTable); } //----------------------------------------------------------------------- void Math::buildTrigTables(void) { // Build trig lookup tables // Could get away with building only PI sized Sin table but simpler this // way. Who cares, it'll ony use an extra 8k of memory anyway and I like // simplicity. Real angle; for (int i = 0; i < mTrigTableSize; ++i) { angle = Math::TWO_PI * i / mTrigTableSize; mSinTable[i] = sin(angle); mTanTable[i] = tan(angle); } } //----------------------------------------------------------------------- Real Math::SinTable (Real fValue) { // Convert range to index values, wrap if required int idx; if (fValue >= 0) { idx = int(fValue * mTrigTableFactor) % mTrigTableSize; } else { idx = mTrigTableSize - (int(-fValue * mTrigTableFactor) % mTrigTableSize) - 1; } return mSinTable[idx]; } //----------------------------------------------------------------------- Real Math::TanTable (Real fValue) { // Convert range to index values, wrap if required int idx = int(fValue *= mTrigTableFactor) % mTrigTableSize; return mTanTable[idx]; } //----------------------------------------------------------------------- int Math::ISign (int iValue) { return ( iValue > 0 ? +1 : ( iValue < 0 ? -1 : 0 ) ); } //----------------------------------------------------------------------- Radian Math::ACos (Real fValue) { if ( -1.0 < fValue ) { if ( fValue < 1.0 ) return Radian(acos(fValue)); else return Radian(0.0); } else { return Radian(OGRE_PI); } } //----------------------------------------------------------------------- Radian Math::ASin (Real fValue) { if ( -1.0 < fValue ) { if ( fValue < 1.0 ) return Radian(asin(fValue)); else return Radian(HALF_PI); } else { return Radian(-HALF_PI); } } //----------------------------------------------------------------------- Real Math::Sign (Real fValue) { if ( fValue > 0.0 ) return 1.0; if ( fValue < 0.0 ) return -1.0; return 0.0; } //----------------------------------------------------------------------- Real Math::InvSqrt(Real fValue) { return Real(asm_rsq(fValue)); } //----------------------------------------------------------------------- Real Math::UnitRandom () { return asm_rand() / asm_rand_max(); } //----------------------------------------------------------------------- Real Math::RangeRandom (Real fLow, Real fHigh) { return (fHigh-fLow)*UnitRandom() + fLow; } //----------------------------------------------------------------------- Real Math::SymmetricRandom () { return 2.0f * UnitRandom() - 1.0f; } //----------------------------------------------------------------------- void Math::setAngleUnit(Math::AngleUnit unit) { msAngleUnit = unit; } //----------------------------------------------------------------------- Math::AngleUnit Math::getAngleUnit(void) { return msAngleUnit; } //----------------------------------------------------------------------- Real Math::AngleUnitsToRadians(Real angleunits) { if (msAngleUnit == AU_DEGREE) return angleunits * fDeg2Rad; else return angleunits; } //----------------------------------------------------------------------- Real Math::RadiansToAngleUnits(Real radians) { if (msAngleUnit == AU_DEGREE) return radians * fRad2Deg; else return radians; } //----------------------------------------------------------------------- Real Math::AngleUnitsToDegrees(Real angleunits) { if (msAngleUnit == AU_RADIAN) return angleunits * fRad2Deg; else return angleunits; } //----------------------------------------------------------------------- Real Math::DegreesToAngleUnits(Real degrees) { if (msAngleUnit == AU_RADIAN) return degrees * fDeg2Rad; else return degrees; } //----------------------------------------------------------------------- bool Math::RealEqual( Real a, Real b, Real tolerance ) { if (fabs(b-a) <= tolerance) return true; else return false; } }