/**************************************************************************** Copyright (c) 2004, Radon Labs GmbH Copyright (c) 2011-2013,WebJet Business Division,CYOU http://www.genesis-3d.com.cn Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #pragma once #ifndef MATH_POLAR_H #define MATH_POLAR_H //------------------------------------------------------------------------------ /** @class Math::polar A polar coordinate inline class, consisting of 2 angles theta (latitude) and rho (longitude). Also offers conversion between cartesian and polar space. Allowed range for theta is 0..180 degree (in rad!) and for rho 0..360 degree (in rad). */ #include "math/scalar.h" #include "math/vector.h" #include "math/float2.h" //------------------------------------------------------------------------------ namespace Math { class polar { public: /// the default constructor polar(); /// constructor, theta and rho args polar(scalar t, scalar r); /// constructor, normalized cartesian vector as arg polar(const vector& v); /// the copy constructor polar(const polar& src); /// the assignment operator void operator=(const polar& rhs); /// convert to normalized cartesian coords vector get_cartesian() const; /// set to polar object void set(const polar& p); /// set to theta and rho void set(scalar t, scalar r); /// set to cartesian void set(const vector& v); scalar theta; scalar rho; }; //------------------------------------------------------------------------------ /** */ inline polar::polar() : theta(0.0f), rho(0.0f) { // empty } //------------------------------------------------------------------------------ /** */ inline polar::polar(scalar t, scalar r) : theta(t), rho(r) { // empty } //------------------------------------------------------------------------------ /** */ inline polar::polar(const vector& v) { this->set(v); } //------------------------------------------------------------------------------ /** */ inline polar::polar(const polar& src) : theta(src.theta), rho(src.rho) { // empty } //------------------------------------------------------------------------------ /** */ inline void polar::operator=(const polar& rhs) { this->theta = rhs.theta; this->rho = rhs.rho; } //------------------------------------------------------------------------------ /** */ inline void polar::set(const polar& p) { this->theta = p.theta; this->rho = p.rho; } //------------------------------------------------------------------------------ /** */ inline void polar::set(scalar t, scalar r) { this->theta = t; this->rho = r; } //------------------------------------------------------------------------------ /** Convert cartesian to polar. */ inline void polar::set(const vector& vec) { vector normVec3d = vector::normalize(vec); this->theta = n_acos(normVec3d.y()); // build a normalized 2d vector of the xz component float2 normVec2d(normVec3d.x(), normVec3d.z()); if (normVec2d.length() > TINY) { normVec2d = float2::normalize(normVec2d); } else { normVec2d.set(1.0f, 0.0f); } // adjust dRho based on the quadrant we are in if ((normVec2d.x() >= 0.0f) && (normVec2d.y() >= 0.0f)) { // quadrant 1 this->rho = n_asin(normVec2d.x()); } else if ((normVec2d.x() < 0.0f) && (normVec2d.y() >= 0.0f)) { // quadrant 2 this->rho = n_asin(normVec2d.y()) + n_deg2rad(270.0f); } else if ((normVec2d.x() < 0.0f) && (normVec2d.y() < 0.0f)) { // quadrant 3 this->rho = n_asin(-normVec2d.x()) + n_deg2rad(180.0f); } else { // quadrant 4 this->rho = n_asin(-normVec2d.y()) + n_deg2rad(90.0f); } } //------------------------------------------------------------------------------ /** Convert polar to cartesian. */ inline vector polar::get_cartesian() const { scalar sinTheta = n_sin(this->theta); scalar cosTheta = n_cos(this->theta); scalar sinRho = n_sin(this->rho); scalar cosRho = n_cos(this->rho); vector v(sinTheta * sinRho, cosTheta, sinTheta * cosRho); return v; } } // namespace Math //------------------------------------------------------------------------------ #endif