/**************************************************************************** Copyright (c) 2010,RadonLabs GmbH Copyright (c) 2011-2013,WebJet Business Division,CYOU http://www.genesis-3d.com.cn Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "stdneb.h" #include "math/intersection.h" #include #include namespace Math { //------------------------------------------------------------------------ // 该算法直接结果为直线是否与三角形相交,判断射线与三角形相交切记判断fOut大于0 2014-4-28 bool Intersection::Intersect( const Ray& ray, const float3& v0, const float3& v1, const float3& v2, scalar& fOut, scalar fTolerance ) { // Find vectors for two edges sharing vert0 float3 edge1 = v1 - v0; float3 edge2 = v2 - v0; // Begin calculating determinant - also used to calculate U parameter float3 pvec = ray.Direction().crossProduct(edge2); // If determinant is near zero, ray lies in plane of triangle scalar det = edge1.dotProduct(pvec); float3 tvec; if( det > 0 ) { tvec = ray.Start() - v0; } else { tvec = v0 - ray.Start(); det = -det; } if( det < fTolerance ) return false; // Calculate U parameter and test bounds scalar u = tvec.dotProduct(pvec); if( u < 0.0f || u > det ) return false; // Prepare to test V parameter float3 qvec = tvec.crossProduct( edge1 ); // Calculate V parameter and test bounds scalar v = ray.Direction().dotProduct( qvec); if( v < 0.0f || u + v > det ) return false; // Calculate t, scale parameters, ray intersects triangle fOut =edge2.dotProduct( qvec ); scalar fInvDet = 1.0f / det; fOut *= fInvDet; return true; } //------------------------------------------------------------------------ bool Intersection::Intersect( const Ray& ray1, const Ray& ray2, scalar& fOut1, scalar& fOut2, scalar fTolerance ) { const float3& dir1 = ray1.Direction(); float3 c = dir1.crossProduct( ray2.Direction() ); scalar clq = c.lengthsq(); if ( n_fequal(clq, 0.0f, fTolerance ) ) { // 平行或者重合 return false; } // 解方程组,得到两点射线上的最近点 float3 pDiff = ray2.Start() - ray1.Start(); float3 pDis_1 = pDiff.crossProduct( ray1.Direction() ); float3 pDis_2 = pDiff.crossProduct( ray2.Direction() ); scalar out1 = ( pDis_2.dotProduct( c ) ) / clq; scalar Out2 = ( pDis_1.dotProduct( c ) ) / clq; // 两个最近点的距离为0, 则相交 float3 p1 = ray1.PointAt( out1 ); float3 p2 = ray2.PointAt( Out2 ); float3 lineseg = p2 - p1; scalar lineLength = lineseg.lengthsq(); if ( n_fequal( lineLength, 0.0f, fTolerance) ) { // 是否在射线的反方向 if ( out1 < 0.0f || Out2 < 0.0f ) { return false; } // intersect fOut1 = out1; fOut2 = Out2; return true; } else { return false; } } //------------------------------------------------------------------------ bool Intersection::Intersect( const Ray& ray1, const float3& lineBegin, const float3& lineEnd, scalar& fOut, scalar fTolerance ) { // 构建中一个射线 float3 lineseg = lineEnd - lineBegin; if ( n_fequal(lineseg.lengthsq(), 0.0, fTolerance ) ) { // 线退化为一个点。使用点的拾取 if( Intersect(ray1, lineBegin, fTolerance ) ) { fOut = 0.0; return true; } else { return false; } } float3 normalDir = lineseg; normalDir.normalise(); Ray ray2(lineBegin, normalDir ); scalar fOut1; scalar fout2; if( Intersect(ray1, ray2, fOut1, fout2, fTolerance) ) { // 判断是在线段上还是在延长线上 scalar linelength = lineseg.length(); if( fout2 < (linelength + fTolerance) ) { fOut = fOut1; return true; } } return false; } //------------------------------------------------------------------------ bool Intersection::Intersect( const Ray& ray, const float3& p, scalar fTolerance ) { float3 dir = p - ray.Start(); // 射线的反方向 if ( dir.dotProduct( ray.Direction() ) < 0.0f ) { return false; } float3 c = dir.crossProduct( ray.Direction() ); scalar clq = c.lengthsq(); if ( n_fequal(clq, 0.0f, fTolerance ) ) { // 平行或者重合 return true; } else { return false; } } //------------------------------------------------------------------------ // Returns true if the ray stats inside the box or in front of the box // if intersect, fOut1 is the first intersection;fOut2 is the second intersection // from Ogre bool Intersection::Intersect(const Ray& ray, const bbox& box, scalar& fOut1, scalar& fOut2) { float3 bmin(box.pmin.x(), box.pmin.y(),box.pmin.z()); float3 bmax(box.pmax.x(), box.pmax.y(),box.pmax.z()); float3 rayorig = ray.Start(); float3 raydir = ray.Direction(); float3 absDir; absDir[0] = n_abs(raydir[0]); absDir[1] = n_abs(raydir[1]); absDir[2] = n_abs(raydir[2]); // Sort the axis, ensure check minimise floating error axis first int imax = 0, imid = 1, imin = 2; if (absDir[0] < absDir[2]) { imax = 2; imin = 0; } if (absDir[1] < absDir[imin]) { imid = imin; imin = 1; } else if (absDir[1] > absDir[imax]) { imid = imax; imax = 1; } scalar start = 0, end = N_INFINITY; #define _CALC_AXIS(i) \ do { \ scalar denom = 1 / raydir[i]; \ scalar newstart = (bmin[i] - rayorig[i]) * denom; \ scalar newend = (bmax[i] - rayorig[i]) * denom; \ if (newstart > newend) std::swap(newstart, newend); \ if (newstart > end || newend < start) return false; \ if (newstart > start) start = newstart; \ if (newend < end) end = newend; \ } while(0) // Check each axis in turn _CALC_AXIS(imax); if (absDir[imid] < std::numeric_limits::epsilon()) { // Parallel with middle and minimise axis, check bounds only if (rayorig[imid] < bmin[imid] || rayorig[imid] > bmax[imid] || rayorig[imin] < bmin[imin] || rayorig[imin] > bmax[imin]) return false; } else { _CALC_AXIS(imid); if (absDir[imin] < std::numeric_limits::epsilon()) { // Parallel with minimise axis, check bounds only if (rayorig[imin] < bmin[imin] || rayorig[imin] > bmax[imin]) return false; } else { _CALC_AXIS(imin); } } #undef _CALC_AXIS fOut1 = start; fOut2 = end; return true; } //------------------------------------------------------------------------ // return true if the sphere 0 intersect sphere 1 bool Intersection::Intersect(const Math::sphere& s0, const Math::sphere& s1 ) { point c_ = s0.p - s1.p; float3 c(c_.x(),c_.y(),c_.z() ); float lengthsq = c.lengthsq(); if ( n_sqrt( s0.r + s1.r ) > lengthsq ) return true; else return false; } // return true if intersect bool Intersection::Intersect(const sphere& sph, const frustum& fru) { return Intersect (sph, fru.planes, frustum::NumPlanes); } bool Intersection::Intersect(const sphere& sph, const plane* p, const int planeCount) { for (int i = 0; i < planeCount; ++i) { float dist = p[i].distance(sph.p); if (dist - sph.r > 0) return false; } return true; } bool Intersection::Intersect(const bbox& box, const sphere& sph) { float4 vec4 = float4::minimize(float4::maximize(sph.p, box.pmin), box.pmax); float num3 = sph.p.x() - vec4.x(); float num2 = sph.p.y() - vec4.y(); float num = sph.p.z() - vec4.z(); float num4 = ((num3 * num3) + (num2 * num2)) + (num * num);//sph 和 vec4的距离的平方 return num <= (sph.r * sph.r); } }