// This code contains NVIDIA Confidential Information and is disclosed to you // under a form of NVIDIA software license agreement provided separately to you. // // Notice // NVIDIA Corporation and its licensors retain all intellectual property and // proprietary rights in and to this software and related documentation and // any modifications thereto. Any use, reproduction, disclosure, or // distribution of this software and related documentation without an express // license agreement from NVIDIA Corporation is strictly prohibited. // // ALL NVIDIA DESIGN SPECIFICATIONS, CODE ARE PROVIDED "AS IS.". NVIDIA MAKES // NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO // THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, // MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. // // Information and code furnished is believed to be accurate and reliable. // However, NVIDIA Corporation assumes no responsibility for the consequences of use of such // information or for any infringement of patents or other rights of third parties that may // result from its use. No license is granted by implication or otherwise under any patent // or patent rights of NVIDIA Corporation. Details are subject to change without notice. // This code supersedes and replaces all information previously supplied. // NVIDIA Corporation products are not authorized for use as critical // components in life support devices or systems without express written approval of // NVIDIA Corporation. // // Copyright (c) 2008-2013 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PX_FOUNDATION_PX_VEC3_H #define PX_FOUNDATION_PX_VEC3_H /** \addtogroup foundation @{ */ #include "foundation/PxMath.h" #ifndef PX_DOXYGEN namespace physx { #endif /** \brief 3 Element vector class. This is a 3-dimensional vector class with public data members. */ class PxVec3 { public: /** \brief default constructor leaves data uninitialized. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3() {} /** \brief Assigns scalar parameter to all elements. Useful to initialize to zero or one. \param[in] a Value to assign to elements. */ explicit PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(PxReal a): x(a), y(a), z(a) {} /** \brief Initializes from 3 scalar parameters. \param[in] nx Value to initialize X component. \param[in] ny Value to initialize Y component. \param[in] nz Value to initialize Z component. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(PxReal nx, PxReal ny, PxReal nz): x(nx), y(ny), z(nz) {} /** \brief Copy ctor. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(const PxVec3& v): x(v.x), y(v.y), z(v.z) {} //Operators /** \brief Assignment operator */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator=(const PxVec3& p) { x = p.x; y = p.y; z = p.z; return *this; } /** \brief element access */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal& operator[](int index) { PX_ASSERT(index>=0 && index<=2); return (&x)[index]; } /** \brief element access */ PX_CUDA_CALLABLE PX_FORCE_INLINE const PxReal& operator[](int index) const { PX_ASSERT(index>=0 && index<=2); return (&x)[index]; } /** \brief returns true if the two vectors are exactly equal. */ PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator==(const PxVec3&v) const { return x == v.x && y == v.y && z == v.z; } /** \brief returns true if the two vectors are not exactly equal. */ PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator!=(const PxVec3&v) const { return x != v.x || y != v.y || z != v.z; } /** \brief tests for exact zero vector */ PX_CUDA_CALLABLE PX_FORCE_INLINE bool isZero() const { return x==0.0f && y==0.0f && z == 0.0f; } /** \brief returns true if all 3 elems of the vector are finite (not NAN or INF, etc.) */ PX_CUDA_CALLABLE PX_INLINE bool isFinite() const { return PxIsFinite(x) && PxIsFinite(y) && PxIsFinite(z); } /** \brief is normalized - used by API parameter validation */ PX_CUDA_CALLABLE PX_FORCE_INLINE bool isNormalized() const { const float unitTolerance = PxReal(1e-4); return isFinite() && PxAbs(magnitude()-1)0 ? *this * PxRecipSqrt(m) : PxVec3(0,0,0); } /** \brief normalizes the vector in place */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal normalize() { const PxReal m = magnitude(); if (m>0) *this /= m; return m; } /** \brief normalizes the vector in place. Does nothing if vector magnitude is under PX_NORMALIZATION_EPSILON. Returns vector magnitude if >= PX_NORMALIZATION_EPSILON and 0.0f otherwise. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal normalizeSafe() { const PxReal mag = magnitude(); if (mag < PX_NORMALIZATION_EPSILON) return 0.0f; *this *= PxReal(1) / mag; return mag; } /** \brief normalizes the vector in place. Asserts if vector magnitude is under PX_NORMALIZATION_EPSILON. returns vector magnitude. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal normalizeFast() { const PxReal mag = magnitude(); PX_ASSERT(mag >= PX_NORMALIZATION_EPSILON); *this *= PxReal(1) / mag; return mag; } /** \brief a[i] * b[i], for all i. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 multiply(const PxVec3& a) const { return PxVec3(x*a.x, y*a.y, z*a.z); } /** \brief element-wise minimum */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 minimum(const PxVec3& v) const { return PxVec3(PxMin(x, v.x), PxMin(y,v.y), PxMin(z,v.z)); } /** \brief returns MIN(x, y, z); */ PX_CUDA_CALLABLE PX_FORCE_INLINE float minElement() const { return PxMin(x, PxMin(y, z)); } /** \brief element-wise maximum */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 maximum(const PxVec3& v) const { return PxVec3(PxMax(x, v.x), PxMax(y,v.y), PxMax(z,v.z)); } /** \brief returns MAX(x, y, z); */ PX_CUDA_CALLABLE PX_FORCE_INLINE float maxElement() const { return PxMax(x, PxMax(y, z)); } PxReal x,y,z; }; PX_CUDA_CALLABLE static PX_FORCE_INLINE PxVec3 operator *(PxReal f, const PxVec3& v) { return PxVec3(f * v.x, f * v.y, f * v.z); } #ifndef PX_DOXYGEN } // namespace physx #endif /** @} */ #endif // PX_FOUNDATION_PX_VEC3_H