// This code contains NVIDIA Confidential Information and is disclosed to you // under a form of NVIDIA software license agreement provided separately to you. // // Notice // NVIDIA Corporation and its licensors retain all intellectual property and // proprietary rights in and to this software and related documentation and // any modifications thereto. Any use, reproduction, disclosure, or // distribution of this software and related documentation without an express // license agreement from NVIDIA Corporation is strictly prohibited. // // ALL NVIDIA DESIGN SPECIFICATIONS, CODE ARE PROVIDED "AS IS.". NVIDIA MAKES // NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO // THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, // MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. // // Information and code furnished is believed to be accurate and reliable. // However, NVIDIA Corporation assumes no responsibility for the consequences of use of such // information or for any infringement of patents or other rights of third parties that may // result from its use. No license is granted by implication or otherwise under any patent // or patent rights of NVIDIA Corporation. Details are subject to change without notice. // This code supersedes and replaces all information previously supplied. // NVIDIA Corporation products are not authorized for use as critical // components in life support devices or systems without express written approval of // NVIDIA Corporation. // // Copyright (c) 2008-2013 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PX_FOUNDATION_PX_TRANSFORM_H #define PX_FOUNDATION_PX_TRANSFORM_H /** \addtogroup foundation @{ */ #include "foundation/PxQuat.h" #include "foundation/PxPlane.h" #ifndef PX_DOXYGEN namespace physx { #endif /*! \brief class representing a rigid euclidean transform as a quaternion and a vector */ class PxTransform { public: PxQuat q; PxVec3 p; //#define PXTRANSFORM_DEFAULT_CONSTRUCT_NAN PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransform() #ifdef PXTRANSFORM_DEFAULT_CONSTRUCT_IDENTITY : q(0, 0, 0, 1), p(0, 0, 0) #elif defined(PXTRANSFORM_DEFAULT_CONSTRUCT_NAN) #define invalid PxSqrt(-1.0f) : q(invalid, invalid, invalid, invalid), p(invalid, invalid, invalid) #undef invalid #endif { } PX_CUDA_CALLABLE PX_FORCE_INLINE explicit PxTransform(const PxVec3& position): q(0, 0, 0, 1), p(position) { } PX_CUDA_CALLABLE PX_FORCE_INLINE explicit PxTransform(const PxQuat& orientation): q(orientation), p(0, 0, 0) { PX_ASSERT(orientation.isSane()); } PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransform(const PxVec3& p0, const PxQuat& q0): q(q0), p(p0) { PX_ASSERT(q0.isSane()); } PX_CUDA_CALLABLE PX_FORCE_INLINE explicit PxTransform(const PxMat44& m); // defined in PxMat44.h PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransform operator*(const PxTransform& x) const { PX_ASSERT(x.isSane()); return transform(x); } PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransform getInverse() const { PX_ASSERT(isFinite()); return PxTransform(q.rotateInv(-p),q.getConjugate()); } PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 transform(const PxVec3& input) const { PX_ASSERT(isFinite()); return q.rotate(input) + p; } PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 transformInv(const PxVec3& input) const { PX_ASSERT(isFinite()); return q.rotateInv(input-p); } PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 rotate(const PxVec3& input) const { PX_ASSERT(isFinite()); return q.rotate(input); } PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 rotateInv(const PxVec3& input) const { PX_ASSERT(isFinite()); return q.rotateInv(input); } //! Transform transform to parent (returns compound transform: first src, then *this) PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransform transform(const PxTransform& src) const { PX_ASSERT(src.isSane()); PX_ASSERT(isSane()); // src = [srct, srcr] -> [r*srct + t, r*srcr] return PxTransform(q.rotate(src.p) + p, q*src.q); } /** \brief returns true if finite and q is a unit quaternion */ PX_CUDA_CALLABLE bool isValid() const { return p.isFinite() && q.isFinite() && q.isUnit(); } /** \brief returns true if finite and quat magnitude is reasonably close to unit to allow for some accumulation of error vs isValid */ PX_CUDA_CALLABLE bool isSane() const { return isFinite() && q.isSane(); } /** \brief returns true if all elems are finite (not NAN or INF, etc.) */ PX_CUDA_CALLABLE PX_FORCE_INLINE bool isFinite() const { return p.isFinite() && q.isFinite(); } //! Transform transform from parent (returns compound transform: first src, then this->inverse) PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransform transformInv(const PxTransform& src) const { PX_ASSERT(src.isSane()); PX_ASSERT(isFinite()); // src = [srct, srcr] -> [r^-1*(srct-t), r^-1*srcr] PxQuat qinv = q.getConjugate(); return PxTransform(qinv.rotate(src.p - p), qinv*src.q); } PX_CUDA_CALLABLE static PX_FORCE_INLINE PxTransform createIdentity() { return PxTransform(PxVec3(0)); } /** \brief transform plane */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxPlane transform(const PxPlane& plane) const { PxVec3 transformedNormal = rotate(plane.n); return PxPlane(transformedNormal, plane.d - p.dot(transformedNormal)); } /** \brief inverse-transform plane */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxPlane inverseTransform(const PxPlane& plane) const { PxVec3 transformedNormal = rotateInv(plane.n); return PxPlane(transformedNormal, plane.d + p.dot(plane.n)); } /** \brief return a normalized transform (i.e. one in which the quaternion has unit magnitude) */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransform getNormalized() const { return PxTransform(p, q.getNormalized()); } }; #ifndef PX_DOXYGEN } // namespace physx #endif /** @} */ #endif // PX_FOUNDATION_PX_TRANSFORM_H