// This code contains NVIDIA Confidential Information and is disclosed to you // under a form of NVIDIA software license agreement provided separately to you. // // Notice // NVIDIA Corporation and its licensors retain all intellectual property and // proprietary rights in and to this software and related documentation and // any modifications thereto. Any use, reproduction, disclosure, or // distribution of this software and related documentation without an express // license agreement from NVIDIA Corporation is strictly prohibited. // // ALL NVIDIA DESIGN SPECIFICATIONS, CODE ARE PROVIDED "AS IS.". NVIDIA MAKES // NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO // THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, // MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. // // Information and code furnished is believed to be accurate and reliable. // However, NVIDIA Corporation assumes no responsibility for the consequences of use of such // information or for any infringement of patents or other rights of third parties that may // result from its use. No license is granted by implication or otherwise under any patent // or patent rights of NVIDIA Corporation. Details are subject to change without notice. // This code supersedes and replaces all information previously supplied. // NVIDIA Corporation products are not authorized for use as critical // components in life support devices or systems without express written approval of // NVIDIA Corporation. // // Copyright (c) 2008-2013 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PX_FOUNDATION_PX_PLANE_H #define PX_FOUNDATION_PX_PLANE_H /** \addtogroup foundation @{ */ #include "foundation/PxMath.h" #include "foundation/PxVec3.h" #ifndef PX_DOXYGEN namespace physx { #endif /** \brief Representation of a plane. Plane equation used: n.dot(v) + d = 0 */ class PxPlane { public: /** \brief Constructor */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxPlane() { } /** \brief Constructor from a normal and a distance */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxPlane(PxReal nx, PxReal ny, PxReal nz, PxReal distance) : n(nx, ny, nz) , d(distance) { } /** \brief Constructor from a normal and a distance */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxPlane(const PxVec3& normal, PxReal distance) : n(normal) , d(distance) { } /** \brief Constructor from a point on the plane and a normal */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxPlane(const PxVec3& point, const PxVec3& normal) : n(normal) , d(-point.dot(n)) // p satisfies normal.dot(p) + d = 0 { } /** \brief Constructor from three points */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxPlane(const PxVec3& p0, const PxVec3& p1, const PxVec3& p2) { n = (p1 - p0).cross(p2 - p0).getNormalized(); d = -p0.dot(n); } PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal distance(const PxVec3& p) const { return p.dot(n) + d; } PX_CUDA_CALLABLE PX_FORCE_INLINE bool contains(const PxVec3& p) const { return PxAbs(distance(p)) < (1.0e-7f); } /** \brief projects p into the plane */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 project(const PxVec3 & p) const { return p - n * distance(p); } /** \brief find an arbitrary point in the plane */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 pointInPlane() const { return -n*d; } /** \brief equivalent plane with unit normal */ PX_CUDA_CALLABLE PX_FORCE_INLINE void normalize() { PxReal denom = 1.0f / n.magnitude(); n *= denom; d *= denom; } PxVec3 n; //!< The normal to the plane PxReal d; //!< The distance from the origin }; #ifndef PX_DOXYGEN } // namespace physx #endif /** @} */ #endif