// This code contains NVIDIA Confidential Information and is disclosed to you // under a form of NVIDIA software license agreement provided separately to you. // // Notice // NVIDIA Corporation and its licensors retain all intellectual property and // proprietary rights in and to this software and related documentation and // any modifications thereto. Any use, reproduction, disclosure, or // distribution of this software and related documentation without an express // license agreement from NVIDIA Corporation is strictly prohibited. // // ALL NVIDIA DESIGN SPECIFICATIONS, CODE ARE PROVIDED "AS IS.". NVIDIA MAKES // NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO // THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, // MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. // // Information and code furnished is believed to be accurate and reliable. // However, NVIDIA Corporation assumes no responsibility for the consequences of use of such // information or for any infringement of patents or other rights of third parties that may // result from its use. No license is granted by implication or otherwise under any patent // or patent rights of NVIDIA Corporation. Details are subject to change without notice. // This code supersedes and replaces all information previously supplied. // NVIDIA Corporation products are not authorized for use as critical // components in life support devices or systems without express written approval of // NVIDIA Corporation. // // Copyright (c) 2008-2013 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PX_FOUNDATION_PX_MAT44_H #define PX_FOUNDATION_PX_MAT44_H /** \addtogroup foundation @{ */ #include "foundation/PxQuat.h" #include "foundation/PxVec4.h" #include "foundation/PxMat33.h" #include "foundation/PxTransform.h" #ifndef PX_DOXYGEN namespace physx { #endif /*! \brief 4x4 matrix class This class is layout-compatible with D3D and OpenGL matrices. More notes on layout are given in the PxMat33 @see PxMat33 PxTransform */ class PxMat44 { public: //! Default constructor PX_CUDA_CALLABLE PX_INLINE PxMat44() {} //! Construct from four 4-vectors PX_CUDA_CALLABLE PxMat44(const PxVec4& col0, const PxVec4& col1, const PxVec4& col2, const PxVec4 &col3) : column0(col0), column1(col1), column2(col2), column3(col3) {} //! Construct from three base vectors and a translation PX_CUDA_CALLABLE PxMat44(const PxVec3& column0, const PxVec3& column1, const PxVec3& column2, const PxVec3& column3) : column0(column0,0), column1(column1,0), column2(column2,0), column3(column3,1) {} //! Construct from float[16] explicit PX_CUDA_CALLABLE PX_INLINE PxMat44(PxReal values[]): column0(values[0],values[1],values[2], values[3]), column1(values[4],values[5],values[6], values[7]), column2(values[8],values[9],values[10], values[11]), column3(values[12], values[13], values[14], values[15]) { } //! Construct from a quaternion explicit PX_CUDA_CALLABLE PX_INLINE PxMat44(const PxQuat& q) { const PxReal x = q.x; const PxReal y = q.y; const PxReal z = q.z; const PxReal w = q.w; const PxReal x2 = x + x; const PxReal y2 = y + y; const PxReal z2 = z + z; const PxReal xx = x2*x; const PxReal yy = y2*y; const PxReal zz = z2*z; const PxReal xy = x2*y; const PxReal xz = x2*z; const PxReal xw = x2*w; const PxReal yz = y2*z; const PxReal yw = y2*w; const PxReal zw = z2*w; column0 = PxVec4(1.0f - yy - zz, xy + zw, xz - yw, 0.0f); column1 = PxVec4(xy - zw, 1.0f - xx - zz, yz + xw, 0.0f); column2 = PxVec4(xz + yw, yz - xw, 1.0f - xx - yy, 0.0f); column3 = PxVec4(0.0f, 0.0f, 0.0f, 1.0f); } //! Construct from a diagonal vector explicit PX_CUDA_CALLABLE PX_INLINE PxMat44(const PxVec4& diagonal): column0(diagonal.x,0.0f,0.0f,0.0f), column1(0.0f,diagonal.y,0.0f,0.0f), column2(0.0f,0.0f,diagonal.z,0.0f), column3(0.0f,0.0f,0.0f,diagonal.w) { } PX_CUDA_CALLABLE PxMat44(const PxMat33& orientation, const PxVec3& position): column0(orientation.column0,0.0f), column1(orientation.column1,0.0f), column2(orientation.column2,0.0f), column3(position,1) { } PX_CUDA_CALLABLE PxMat44(const PxTransform& t) { *this = PxMat44(PxMat33(t.q), t.p); } //! Copy constructor PX_CUDA_CALLABLE PX_INLINE PxMat44(const PxMat44& other) : column0(other.column0), column1(other.column1), column2(other.column2), column3(other.column3) {} //! Assignment operator PX_CUDA_CALLABLE PX_INLINE const PxMat44& operator=(const PxMat44& other) { column0 = other.column0; column1 = other.column1; column2 = other.column2; column3 = other.column3; return *this; } PX_CUDA_CALLABLE PX_INLINE static PxMat44 createIdentity() { return PxMat44( PxVec4(1.0f,0.0f,0.0f,0.0f), PxVec4(0.0f,1.0f,0.0f,0.0f), PxVec4(0.0f,0.0f,1.0f,0.0f), PxVec4(0.0f,0.0f,0.0f,1.0f)); } PX_CUDA_CALLABLE PX_INLINE static PxMat44 createZero() { return PxMat44(PxVec4(0.0f), PxVec4(0.0f), PxVec4(0.0f), PxVec4(0.0f)); } //! Get transposed matrix PX_CUDA_CALLABLE PX_INLINE PxMat44 getTranspose() const { return PxMat44(PxVec4(column0.x, column1.x, column2.x, column3.x), PxVec4(column0.y, column1.y, column2.y, column3.y), PxVec4(column0.z, column1.z, column2.z, column3.z), PxVec4(column0.w, column1.w, column2.w, column3.w)); } //! Unary minus PX_CUDA_CALLABLE PX_INLINE PxMat44 operator-() const { return PxMat44(-column0, -column1, -column2, -column3); } //! Add PX_CUDA_CALLABLE PX_INLINE PxMat44 operator+(const PxMat44& other) const { return PxMat44( column0+other.column0, column1+other.column1, column2+other.column2, column3+other.column3); } //! Subtract PX_CUDA_CALLABLE PX_INLINE PxMat44 operator-(const PxMat44& other) const { return PxMat44( column0-other.column0, column1-other.column1, column2-other.column2, column3-other.column3); } //! Scalar multiplication PX_CUDA_CALLABLE PX_INLINE PxMat44 operator*(PxReal scalar) const { return PxMat44(column0*scalar, column1*scalar, column2*scalar, column3*scalar); } friend PxMat44 operator*(PxReal, const PxMat44&); //! Matrix multiplication PX_CUDA_CALLABLE PX_INLINE PxMat44 operator*(const PxMat44& other) const { //Rows from this columns from other //column0 = transform(other.column0) etc return PxMat44(transform(other.column0), transform(other.column1), transform(other.column2), transform(other.column3)); } // a = b operators //! Equals-add PX_CUDA_CALLABLE PX_INLINE PxMat44& operator+=(const PxMat44& other) { column0 += other.column0; column1 += other.column1; column2 += other.column2; column3 += other.column3; return *this; } //! Equals-sub PX_CUDA_CALLABLE PX_INLINE PxMat44& operator-=(const PxMat44& other) { column0 -= other.column0; column1 -= other.column1; column2 -= other.column2; column3 -= other.column3; return *this; } //! Equals scalar multiplication PX_CUDA_CALLABLE PX_INLINE PxMat44& operator*=(PxReal scalar) { column0 *= scalar; column1 *= scalar; column2 *= scalar; column3 *= scalar; return *this; } //! Element access, mathematical way! PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal operator()(unsigned int row, unsigned int col) const { return (*this)[col][row]; } //! Element access, mathematical way! PX_CUDA_CALLABLE PX_FORCE_INLINE PxReal& operator()(unsigned int row, unsigned int col) { return (*this)[col][row]; } //! Transform vector by matrix, equal to v' = M*v PX_CUDA_CALLABLE PX_INLINE PxVec4 transform(const PxVec4& other) const { return column0*other.x + column1*other.y + column2*other.z + column3*other.w; } //! Transform vector by matrix, equal to v' = M*v PX_CUDA_CALLABLE PX_INLINE PxVec3 transform(const PxVec3& other) const { return transform(PxVec4(other,1)).getXYZ(); } //! Rotate vector by matrix, equal to v' = M*v PX_CUDA_CALLABLE PX_INLINE PxVec4 rotate(const PxVec4& other) const { return column0*other.x + column1*other.y + column2*other.z;// + column3*0; } //! Rotate vector by matrix, equal to v' = M*v PX_CUDA_CALLABLE PX_INLINE PxVec3 rotate(const PxVec3& other) const { return rotate(PxVec4(other,1)).getXYZ(); } PX_CUDA_CALLABLE PX_INLINE PxVec3 getBasis(int num) const { PX_ASSERT(num>=0 && num<3); return (&column0)[num].getXYZ(); } PX_CUDA_CALLABLE PX_INLINE PxVec3 getPosition() const { return column3.getXYZ(); } PX_CUDA_CALLABLE PX_INLINE void setPosition(const PxVec3& position) { column3.x = position.x; column3.y = position.y; column3.z = position.z; } PX_CUDA_CALLABLE PX_FORCE_INLINE const PxReal* front() const { return &column0.x; } PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec4& operator[](int num) {return (&column0)[num];} PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec4& operator[](int num) const {return (&column0)[num];} PX_CUDA_CALLABLE PX_INLINE void scale(const PxVec4& p) { column0 *= p.x; column1 *= p.y; column2 *= p.z; column3 *= p.w; } PX_CUDA_CALLABLE PX_INLINE PxMat44 inverseRT(void) const { PxVec3 r0(column0.x, column1.x, column2.x), r1(column0.y, column1.y, column2.y), r2(column0.z, column1.z, column2.z); return PxMat44(r0, r1, r2, -(r0 * column3.x + r1 * column3.y + r2 * column3.z)); } PX_CUDA_CALLABLE PX_INLINE bool isFinite() const { return column0.isFinite() && column1.isFinite() && column2.isFinite() && column3.isFinite(); } //Data, see above for format! PxVec4 column0, column1, column2, column3; //the four base vectors }; // implementation from PxTransform.h PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransform::PxTransform(const PxMat44& m) { PxVec3 column0 = PxVec3(m.column0.x, m.column0.y, m.column0.z); PxVec3 column1 = PxVec3(m.column1.x, m.column1.y, m.column1.z); PxVec3 column2 = PxVec3(m.column2.x, m.column2.y, m.column2.z); q = PxQuat(PxMat33(column0, column1, column2)); p = PxVec3(m.column3.x, m.column3.y, m.column3.z); } #ifndef PX_DOXYGEN } // namespace physx #endif /** @} */ #endif // PX_FOUNDATION_PX_MAT44_H