// This code contains NVIDIA Confidential Information and is disclosed to you // under a form of NVIDIA software license agreement provided separately to you. // // Notice // NVIDIA Corporation and its licensors retain all intellectual property and // proprietary rights in and to this software and related documentation and // any modifications thereto. Any use, reproduction, disclosure, or // distribution of this software and related documentation without an express // license agreement from NVIDIA Corporation is strictly prohibited. // // ALL NVIDIA DESIGN SPECIFICATIONS, CODE ARE PROVIDED "AS IS.". NVIDIA MAKES // NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO // THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, // MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. // // Information and code furnished is believed to be accurate and reliable. // However, NVIDIA Corporation assumes no responsibility for the consequences of use of such // information or for any infringement of patents or other rights of third parties that may // result from its use. No license is granted by implication or otherwise under any patent // or patent rights of NVIDIA Corporation. Details are subject to change without notice. // This code supersedes and replaces all information previously supplied. // NVIDIA Corporation products are not authorized for use as critical // components in life support devices or systems without express written approval of // NVIDIA Corporation. // // Copyright (c) 2008-2013 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PX_COLLISION_NXCONVEXMESHDESC #define PX_COLLISION_NXCONVEXMESHDESC /** \addtogroup cooking @{ */ #include "foundation/PxVec3.h" #include "foundation/PxFlags.h" #include "common/PxCoreUtilityTypes.h" #ifndef PX_DOXYGEN namespace physx { #endif /** \brief Flags which describe the format and behavior of a convex mesh. */ struct PxConvexFlag { enum Enum { /** \brief Used to flip the normals if the winding order is reversed. The Nx libraries assume that the face normal of a triangle with vertices [a,b,c] can be computed as: edge1 = b-a edge2 = c-a face_normal = edge1 x edge2. Note: this is the same as counterclockwise winding in a right handed graphics coordinate system. If this does not match the winding order for your triangles, raise the below flag. */ eFLIPNORMALS = (1<<0), /** Denotes the use of 16-bit vertex indices in PxConvexMeshDesc::triangles. (otherwise, 32-bit indices are assumed) @see #PxConvexMeshDesc.triangles */ e16_BIT_INDICES = (1<<1), /** Automatically recomputes the hull from the vertices. If this flag is not set, you must provide the entire geometry manually. */ eCOMPUTE_CONVEX = (1<<2), /** \brief Inflates the convex object according to skin width \note This flag is only used in combination with eCOMPUTE_CONVEX. @see PxCookingParams */ eINFLATE_CONVEX = (1<<3), /** \brief Instructs cooking to save normals uncompressed. The cooked hull data will be larger, but will load faster. @see PxCookingParams */ eUSE_UNCOMPRESSED_NORMALS = (1<<5), }; }; /** \brief collection of set bits defined in PxConvexFlag. @see PxConvexFlag */ typedef PxFlags PxConvexFlags; PX_FLAGS_OPERATORS(PxConvexFlag::Enum,PxU16); typedef PxVec3 PxPoint; /** \brief Descriptor class for #PxConvexMesh. \note The number of vertices and the number of convex polygons in a cooked convex mesh is limited to 256. @see PxConvexMesh PxConvexMeshGeometry PxShape PxPhysics.createConvexMesh() */ class PxConvexMeshDesc { public: /** \brief Pointer to array of vertex positions. Pointer to first vertex point. Caller may add pointStrideBytes bytes to the pointer to access the next point. Default: NULL */ PxBoundedData points; /** \brief Pointer to array of triangle indices.

Pointer to first triangle. Caller may add triangleStrideBytes bytes to the pointer to access the next triangle.

These are triplets of 0 based indices:
	vert0 vert1 vert2
	vert0 vert1 vert2
	vert0 vert1 vert2
	...

Where vertex is either a 32 or 16 bit unsigned integer. There are numTriangles*3 indices.

This is declared as a void pointer because it is actually either an PxU16 or a PxU32 pointer.

Default: NULL @see PxConvexFlag::e16_BIT_INDICES */ PxBoundedData triangles; /** \brief Flags bits, combined from values of the enum ::PxConvexFlag Default: 0 */ PxConvexFlags flags; /** \brief constructor sets to default. */ PX_INLINE PxConvexMeshDesc(); /** \brief (re)sets the structure to the default. */ PX_INLINE void setToDefault(); /** \brief Returns true if the descriptor is valid. \return True if the current settings are valid */ PX_INLINE bool isValid() const; }; PX_INLINE PxConvexMeshDesc::PxConvexMeshDesc() //constructor sets to default { } PX_INLINE void PxConvexMeshDesc::setToDefault() { *this = PxConvexMeshDesc(); } PX_INLINE bool PxConvexMeshDesc::isValid() const { // Check geometry if(points.count < 3 || //at least 1 trig's worth of points (points.count > 0xffff && flags & PxConvexFlag::e16_BIT_INDICES)) return false; if(!points.data) return false; if(points.stride < sizeof(PxPoint)) //should be at least one point's worth of data return false; // Check topology // The triangles pointer is not mandatory: the vertex cloud is enough to define the convex hull. if(triangles.data) { // Indexed mesh if(triangles.count < 2) //some algos require at least 2 trigs return false; PxU32 limit = (flags & PxConvexFlag::e16_BIT_INDICES) ? sizeof(PxU16)*3 : sizeof(PxU32)*3; if(triangles.stride < limit) return false; } else { // We can compute the hull from the vertices if(!(flags & PxConvexFlag::eCOMPUTE_CONVEX)) return false; // If the mesh is convex and we're not allowed to compute the hull, // you have to provide it completely (geometry & topology). } return true; } #ifndef PX_DOXYGEN } // namespace physx #endif /** @} */ #endif