662 lines
25 KiB
C
662 lines
25 KiB
C
|
/*
|
||
|
-----------------------------------------------------------------------------
|
||
|
This source file is part of OGRE
|
||
|
(Object-oriented Graphics Rendering Engine)
|
||
|
For the latest info, see http://www.ogre3d.org/
|
||
|
|
||
|
Copyright (c) 2000-2009 Torus Knot Software Ltd
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
of this software and associated documentation files (the "Software"), to deal
|
||
|
in the Software without restriction, including without limitation the rights
|
||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
copies of the Software, and to permit persons to whom the Software is
|
||
|
furnished to do so, subject to the following conditions:
|
||
|
|
||
|
The above copyright notice and this permission notice shall be included in
|
||
|
all copies or substantial portions of the Software.
|
||
|
|
||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
THE SOFTWARE.
|
||
|
-----------------------------------------------------------------------------
|
||
|
*/
|
||
|
#ifndef __Matrix4__
|
||
|
#define __Matrix4__
|
||
|
|
||
|
// Precompiler options
|
||
|
#include "OgrePrerequisites.h"
|
||
|
|
||
|
#include "OgreVector3.h"
|
||
|
#include "OgreMatrix3.h"
|
||
|
#include "OgreVector4.h"
|
||
|
namespace Ogre
|
||
|
{
|
||
|
/** \addtogroup Core
|
||
|
* @{
|
||
|
*/
|
||
|
/** \addtogroup Math
|
||
|
* @{
|
||
|
*/
|
||
|
/** Class encapsulating a standard 4x4 homogeneous matrix.
|
||
|
@remarks
|
||
|
OGRE uses column vectors when applying matrix multiplications,
|
||
|
This means a vector is represented as a single column, 4-row
|
||
|
matrix. This has the effect that the transformations implemented
|
||
|
by the matrices happens right-to-left e.g. if vector V is to be
|
||
|
transformed by M1 then M2 then M3, the calculation would be
|
||
|
M3 * M2 * M1 * V. The order that matrices are concatenated is
|
||
|
vital since matrix multiplication is not commutative, i.e. you
|
||
|
can get a different result if you concatenate in the wrong order.
|
||
|
@par
|
||
|
The use of column vectors and right-to-left ordering is the
|
||
|
standard in most mathematical texts, and is the same as used in
|
||
|
OpenGL. It is, however, the opposite of Direct3D, which has
|
||
|
inexplicably chosen to differ from the accepted standard and uses
|
||
|
row vectors and left-to-right matrix multiplication.
|
||
|
@par
|
||
|
OGRE deals with the differences between D3D and OpenGL etc.
|
||
|
internally when operating through different render systems. OGRE
|
||
|
users only need to conform to standard maths conventions, i.e.
|
||
|
right-to-left matrix multiplication, (OGRE transposes matrices it
|
||
|
passes to D3D to compensate).
|
||
|
@par
|
||
|
The generic form M * V which shows the layout of the matrix
|
||
|
entries is shown below:
|
||
|
<pre>
|
||
|
[ m[0][0] m[0][1] m[0][2] m[0][3] ] {x}
|
||
|
| m[1][0] m[1][1] m[1][2] m[1][3] | * {y}
|
||
|
| m[2][0] m[2][1] m[2][2] m[2][3] | {z}
|
||
|
[ m[3][0] m[3][1] m[3][2] m[3][3] ] {1}
|
||
|
</pre>
|
||
|
*/
|
||
|
class Matrix4
|
||
|
{
|
||
|
protected:
|
||
|
/// The matrix entries, indexed by [row][col].
|
||
|
union {
|
||
|
Real m[4][4];
|
||
|
Real _m[16];
|
||
|
};
|
||
|
public:
|
||
|
/** Default constructor.
|
||
|
@note
|
||
|
It does <b>NOT</b> initialize the matrix for efficiency.
|
||
|
*/
|
||
|
inline Matrix4()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
inline Matrix4(
|
||
|
Real m00, Real m01, Real m02, Real m03,
|
||
|
Real m10, Real m11, Real m12, Real m13,
|
||
|
Real m20, Real m21, Real m22, Real m23,
|
||
|
Real m30, Real m31, Real m32, Real m33 )
|
||
|
{
|
||
|
m[0][0] = m00;
|
||
|
m[0][1] = m01;
|
||
|
m[0][2] = m02;
|
||
|
m[0][3] = m03;
|
||
|
m[1][0] = m10;
|
||
|
m[1][1] = m11;
|
||
|
m[1][2] = m12;
|
||
|
m[1][3] = m13;
|
||
|
m[2][0] = m20;
|
||
|
m[2][1] = m21;
|
||
|
m[2][2] = m22;
|
||
|
m[2][3] = m23;
|
||
|
m[3][0] = m30;
|
||
|
m[3][1] = m31;
|
||
|
m[3][2] = m32;
|
||
|
m[3][3] = m33;
|
||
|
}
|
||
|
|
||
|
/** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling 3x3 matrix.
|
||
|
*/
|
||
|
|
||
|
inline Matrix4(const Matrix3& m3x3)
|
||
|
{
|
||
|
operator=(IDENTITY);
|
||
|
operator=(m3x3);
|
||
|
}
|
||
|
|
||
|
/** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling Quaternion.
|
||
|
*/
|
||
|
|
||
|
inline Matrix4(const Quaternion& rot)
|
||
|
{
|
||
|
Matrix3 m3x3;
|
||
|
rot.ToRotationMatrix(m3x3);
|
||
|
operator=(IDENTITY);
|
||
|
operator=(m3x3);
|
||
|
}
|
||
|
|
||
|
|
||
|
/** Exchange the contents of this matrix with another.
|
||
|
*/
|
||
|
inline void swap(Matrix4& other)
|
||
|
{
|
||
|
std::swap(m[0][0], other.m[0][0]);
|
||
|
std::swap(m[0][1], other.m[0][1]);
|
||
|
std::swap(m[0][2], other.m[0][2]);
|
||
|
std::swap(m[0][3], other.m[0][3]);
|
||
|
std::swap(m[1][0], other.m[1][0]);
|
||
|
std::swap(m[1][1], other.m[1][1]);
|
||
|
std::swap(m[1][2], other.m[1][2]);
|
||
|
std::swap(m[1][3], other.m[1][3]);
|
||
|
std::swap(m[2][0], other.m[2][0]);
|
||
|
std::swap(m[2][1], other.m[2][1]);
|
||
|
std::swap(m[2][2], other.m[2][2]);
|
||
|
std::swap(m[2][3], other.m[2][3]);
|
||
|
std::swap(m[3][0], other.m[3][0]);
|
||
|
std::swap(m[3][1], other.m[3][1]);
|
||
|
std::swap(m[3][2], other.m[3][2]);
|
||
|
std::swap(m[3][3], other.m[3][3]);
|
||
|
}
|
||
|
|
||
|
inline Real* operator [] ( size_t iRow )
|
||
|
{
|
||
|
assert( iRow < 4 );
|
||
|
return m[iRow];
|
||
|
}
|
||
|
|
||
|
inline const Real *operator [] ( size_t iRow ) const
|
||
|
{
|
||
|
assert( iRow < 4 );
|
||
|
return m[iRow];
|
||
|
}
|
||
|
|
||
|
inline Matrix4 concatenate(const Matrix4 &m2) const
|
||
|
{
|
||
|
Matrix4 r;
|
||
|
r.m[0][0] = m[0][0] * m2.m[0][0] + m[0][1] * m2.m[1][0] + m[0][2] * m2.m[2][0] + m[0][3] * m2.m[3][0];
|
||
|
r.m[0][1] = m[0][0] * m2.m[0][1] + m[0][1] * m2.m[1][1] + m[0][2] * m2.m[2][1] + m[0][3] * m2.m[3][1];
|
||
|
r.m[0][2] = m[0][0] * m2.m[0][2] + m[0][1] * m2.m[1][2] + m[0][2] * m2.m[2][2] + m[0][3] * m2.m[3][2];
|
||
|
r.m[0][3] = m[0][0] * m2.m[0][3] + m[0][1] * m2.m[1][3] + m[0][2] * m2.m[2][3] + m[0][3] * m2.m[3][3];
|
||
|
|
||
|
r.m[1][0] = m[1][0] * m2.m[0][0] + m[1][1] * m2.m[1][0] + m[1][2] * m2.m[2][0] + m[1][3] * m2.m[3][0];
|
||
|
r.m[1][1] = m[1][0] * m2.m[0][1] + m[1][1] * m2.m[1][1] + m[1][2] * m2.m[2][1] + m[1][3] * m2.m[3][1];
|
||
|
r.m[1][2] = m[1][0] * m2.m[0][2] + m[1][1] * m2.m[1][2] + m[1][2] * m2.m[2][2] + m[1][3] * m2.m[3][2];
|
||
|
r.m[1][3] = m[1][0] * m2.m[0][3] + m[1][1] * m2.m[1][3] + m[1][2] * m2.m[2][3] + m[1][3] * m2.m[3][3];
|
||
|
|
||
|
r.m[2][0] = m[2][0] * m2.m[0][0] + m[2][1] * m2.m[1][0] + m[2][2] * m2.m[2][0] + m[2][3] * m2.m[3][0];
|
||
|
r.m[2][1] = m[2][0] * m2.m[0][1] + m[2][1] * m2.m[1][1] + m[2][2] * m2.m[2][1] + m[2][3] * m2.m[3][1];
|
||
|
r.m[2][2] = m[2][0] * m2.m[0][2] + m[2][1] * m2.m[1][2] + m[2][2] * m2.m[2][2] + m[2][3] * m2.m[3][2];
|
||
|
r.m[2][3] = m[2][0] * m2.m[0][3] + m[2][1] * m2.m[1][3] + m[2][2] * m2.m[2][3] + m[2][3] * m2.m[3][3];
|
||
|
|
||
|
r.m[3][0] = m[3][0] * m2.m[0][0] + m[3][1] * m2.m[1][0] + m[3][2] * m2.m[2][0] + m[3][3] * m2.m[3][0];
|
||
|
r.m[3][1] = m[3][0] * m2.m[0][1] + m[3][1] * m2.m[1][1] + m[3][2] * m2.m[2][1] + m[3][3] * m2.m[3][1];
|
||
|
r.m[3][2] = m[3][0] * m2.m[0][2] + m[3][1] * m2.m[1][2] + m[3][2] * m2.m[2][2] + m[3][3] * m2.m[3][2];
|
||
|
r.m[3][3] = m[3][0] * m2.m[0][3] + m[3][1] * m2.m[1][3] + m[3][2] * m2.m[2][3] + m[3][3] * m2.m[3][3];
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/** Matrix concatenation using '*'.
|
||
|
*/
|
||
|
inline Matrix4 operator * ( const Matrix4 &m2 ) const
|
||
|
{
|
||
|
return concatenate( m2 );
|
||
|
}
|
||
|
|
||
|
/** Vector transformation using '*'.
|
||
|
@remarks
|
||
|
Transforms the given 3-D vector by the matrix, projecting the
|
||
|
result back into <i>w</i> = 1.
|
||
|
@note
|
||
|
This means that the initial <i>w</i> is considered to be 1.0,
|
||
|
and then all the tree elements of the resulting 3-D vector are
|
||
|
divided by the resulting <i>w</i>.
|
||
|
*/
|
||
|
inline Vector3 operator * ( const Vector3 &v ) const
|
||
|
{
|
||
|
Vector3 r;
|
||
|
|
||
|
Real fInvW = 1.0f / ( m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] );
|
||
|
|
||
|
r.x = ( m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] ) * fInvW;
|
||
|
r.y = ( m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] ) * fInvW;
|
||
|
r.z = ( m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] ) * fInvW;
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
inline Vector4 operator * (const Vector4& v) const
|
||
|
{
|
||
|
return Vector4(
|
||
|
m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w,
|
||
|
m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w,
|
||
|
m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w,
|
||
|
m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] * v.w
|
||
|
);
|
||
|
}
|
||
|
/** Matrix addition.
|
||
|
*/
|
||
|
inline Matrix4 operator + ( const Matrix4 &m2 ) const
|
||
|
{
|
||
|
Matrix4 r;
|
||
|
|
||
|
r.m[0][0] = m[0][0] + m2.m[0][0];
|
||
|
r.m[0][1] = m[0][1] + m2.m[0][1];
|
||
|
r.m[0][2] = m[0][2] + m2.m[0][2];
|
||
|
r.m[0][3] = m[0][3] + m2.m[0][3];
|
||
|
|
||
|
r.m[1][0] = m[1][0] + m2.m[1][0];
|
||
|
r.m[1][1] = m[1][1] + m2.m[1][1];
|
||
|
r.m[1][2] = m[1][2] + m2.m[1][2];
|
||
|
r.m[1][3] = m[1][3] + m2.m[1][3];
|
||
|
|
||
|
r.m[2][0] = m[2][0] + m2.m[2][0];
|
||
|
r.m[2][1] = m[2][1] + m2.m[2][1];
|
||
|
r.m[2][2] = m[2][2] + m2.m[2][2];
|
||
|
r.m[2][3] = m[2][3] + m2.m[2][3];
|
||
|
|
||
|
r.m[3][0] = m[3][0] + m2.m[3][0];
|
||
|
r.m[3][1] = m[3][1] + m2.m[3][1];
|
||
|
r.m[3][2] = m[3][2] + m2.m[3][2];
|
||
|
r.m[3][3] = m[3][3] + m2.m[3][3];
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/** Matrix subtraction.
|
||
|
*/
|
||
|
inline Matrix4 operator - ( const Matrix4 &m2 ) const
|
||
|
{
|
||
|
Matrix4 r;
|
||
|
r.m[0][0] = m[0][0] - m2.m[0][0];
|
||
|
r.m[0][1] = m[0][1] - m2.m[0][1];
|
||
|
r.m[0][2] = m[0][2] - m2.m[0][2];
|
||
|
r.m[0][3] = m[0][3] - m2.m[0][3];
|
||
|
|
||
|
r.m[1][0] = m[1][0] - m2.m[1][0];
|
||
|
r.m[1][1] = m[1][1] - m2.m[1][1];
|
||
|
r.m[1][2] = m[1][2] - m2.m[1][2];
|
||
|
r.m[1][3] = m[1][3] - m2.m[1][3];
|
||
|
|
||
|
r.m[2][0] = m[2][0] - m2.m[2][0];
|
||
|
r.m[2][1] = m[2][1] - m2.m[2][1];
|
||
|
r.m[2][2] = m[2][2] - m2.m[2][2];
|
||
|
r.m[2][3] = m[2][3] - m2.m[2][3];
|
||
|
|
||
|
r.m[3][0] = m[3][0] - m2.m[3][0];
|
||
|
r.m[3][1] = m[3][1] - m2.m[3][1];
|
||
|
r.m[3][2] = m[3][2] - m2.m[3][2];
|
||
|
r.m[3][3] = m[3][3] - m2.m[3][3];
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/** Tests 2 matrices for equality.
|
||
|
*/
|
||
|
inline bool operator == ( const Matrix4& m2 ) const
|
||
|
{
|
||
|
if(
|
||
|
m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] ||
|
||
|
m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] ||
|
||
|
m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] ||
|
||
|
m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] )
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/** Tests 2 matrices for inequality.
|
||
|
*/
|
||
|
inline bool operator != ( const Matrix4& m2 ) const
|
||
|
{
|
||
|
if(
|
||
|
m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] ||
|
||
|
m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] ||
|
||
|
m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] ||
|
||
|
m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] )
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/** Assignment from 3x3 matrix.
|
||
|
*/
|
||
|
inline void operator = ( const Matrix3& mat3 )
|
||
|
{
|
||
|
m[0][0] = mat3.m[0][0]; m[0][1] = mat3.m[0][1]; m[0][2] = mat3.m[0][2];
|
||
|
m[1][0] = mat3.m[1][0]; m[1][1] = mat3.m[1][1]; m[1][2] = mat3.m[1][2];
|
||
|
m[2][0] = mat3.m[2][0]; m[2][1] = mat3.m[2][1]; m[2][2] = mat3.m[2][2];
|
||
|
}
|
||
|
|
||
|
inline Matrix4 transpose(void) const
|
||
|
{
|
||
|
return Matrix4(m[0][0], m[1][0], m[2][0], m[3][0],
|
||
|
m[0][1], m[1][1], m[2][1], m[3][1],
|
||
|
m[0][2], m[1][2], m[2][2], m[3][2],
|
||
|
m[0][3], m[1][3], m[2][3], m[3][3]);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-----------------------------------------------------------------------
|
||
|
Translation Transformation
|
||
|
-----------------------------------------------------------------------
|
||
|
*/
|
||
|
/** Sets the translation transformation part of the matrix.
|
||
|
*/
|
||
|
inline void setTrans( const Vector3& v )
|
||
|
{
|
||
|
m[0][3] = v.x;
|
||
|
m[1][3] = v.y;
|
||
|
m[2][3] = v.z;
|
||
|
}
|
||
|
|
||
|
/** Extracts the translation transformation part of the matrix.
|
||
|
*/
|
||
|
inline Vector3 getTrans() const
|
||
|
{
|
||
|
return Vector3(m[0][3], m[1][3], m[2][3]);
|
||
|
}
|
||
|
|
||
|
|
||
|
/** Builds a translation matrix
|
||
|
*/
|
||
|
inline void makeTrans( const Vector3& v )
|
||
|
{
|
||
|
m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = v.x;
|
||
|
m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = v.y;
|
||
|
m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = v.z;
|
||
|
m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0;
|
||
|
}
|
||
|
|
||
|
inline void makeTrans( Real tx, Real ty, Real tz )
|
||
|
{
|
||
|
m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = tx;
|
||
|
m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = ty;
|
||
|
m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = tz;
|
||
|
m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0;
|
||
|
}
|
||
|
|
||
|
/** Gets a translation matrix.
|
||
|
*/
|
||
|
inline static Matrix4 getTrans( const Vector3& v )
|
||
|
{
|
||
|
Matrix4 r;
|
||
|
|
||
|
r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = v.x;
|
||
|
r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = v.y;
|
||
|
r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = v.z;
|
||
|
r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/** Gets a translation matrix - variation for not using a vector.
|
||
|
*/
|
||
|
inline static Matrix4 getTrans( Real t_x, Real t_y, Real t_z )
|
||
|
{
|
||
|
Matrix4 r;
|
||
|
|
||
|
r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = t_x;
|
||
|
r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = t_y;
|
||
|
r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = t_z;
|
||
|
r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-----------------------------------------------------------------------
|
||
|
Scale Transformation
|
||
|
-----------------------------------------------------------------------
|
||
|
*/
|
||
|
/** Sets the scale part of the matrix.
|
||
|
*/
|
||
|
inline void setScale( const Vector3& v )
|
||
|
{
|
||
|
m[0][0] = v.x;
|
||
|
m[1][1] = v.y;
|
||
|
m[2][2] = v.z;
|
||
|
}
|
||
|
|
||
|
/** Gets a scale matrix.
|
||
|
*/
|
||
|
inline static Matrix4 getScale( const Vector3& v )
|
||
|
{
|
||
|
Matrix4 r;
|
||
|
r.m[0][0] = v.x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0;
|
||
|
r.m[1][0] = 0.0; r.m[1][1] = v.y; r.m[1][2] = 0.0; r.m[1][3] = 0.0;
|
||
|
r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = v.z; r.m[2][3] = 0.0;
|
||
|
r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/** Gets a scale matrix - variation for not using a vector.
|
||
|
*/
|
||
|
inline static Matrix4 getScale( Real s_x, Real s_y, Real s_z )
|
||
|
{
|
||
|
Matrix4 r;
|
||
|
r.m[0][0] = s_x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0;
|
||
|
r.m[1][0] = 0.0; r.m[1][1] = s_y; r.m[1][2] = 0.0; r.m[1][3] = 0.0;
|
||
|
r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = s_z; r.m[2][3] = 0.0;
|
||
|
r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/** Extracts the rotation / scaling part of the Matrix as a 3x3 matrix.
|
||
|
@param m3x3 Destination Matrix3
|
||
|
*/
|
||
|
inline void extract3x3Matrix(Matrix3& m3x3) const
|
||
|
{
|
||
|
m3x3.m[0][0] = m[0][0];
|
||
|
m3x3.m[0][1] = m[0][1];
|
||
|
m3x3.m[0][2] = m[0][2];
|
||
|
m3x3.m[1][0] = m[1][0];
|
||
|
m3x3.m[1][1] = m[1][1];
|
||
|
m3x3.m[1][2] = m[1][2];
|
||
|
m3x3.m[2][0] = m[2][0];
|
||
|
m3x3.m[2][1] = m[2][1];
|
||
|
m3x3.m[2][2] = m[2][2];
|
||
|
|
||
|
}
|
||
|
|
||
|
/** Determines if this matrix involves a scaling. */
|
||
|
inline bool hasScale() const
|
||
|
{
|
||
|
// check magnitude of column vectors (==local axes)
|
||
|
Real t = m[0][0] * m[0][0] + m[1][0] * m[1][0] + m[2][0] * m[2][0];
|
||
|
if (!Math::RealEqual(t, 1.0, (Real)1e-04))
|
||
|
return true;
|
||
|
t = m[0][1] * m[0][1] + m[1][1] * m[1][1] + m[2][1] * m[2][1];
|
||
|
if (!Math::RealEqual(t, 1.0, (Real)1e-04))
|
||
|
return true;
|
||
|
t = m[0][2] * m[0][2] + m[1][2] * m[1][2] + m[2][2] * m[2][2];
|
||
|
if (!Math::RealEqual(t, 1.0, (Real)1e-04))
|
||
|
return true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/** Determines if this matrix involves a negative scaling. */
|
||
|
inline bool hasNegativeScale() const
|
||
|
{
|
||
|
return determinant() < 0;
|
||
|
}
|
||
|
|
||
|
/** Extracts the rotation / scaling part as a quaternion from the Matrix.
|
||
|
*/
|
||
|
inline Quaternion extractQuaternion() const
|
||
|
{
|
||
|
Matrix3 m3x3;
|
||
|
extract3x3Matrix(m3x3);
|
||
|
return Quaternion(m3x3);
|
||
|
}
|
||
|
|
||
|
static const Matrix4 ZERO;
|
||
|
static const Matrix4 IDENTITY;
|
||
|
/** Useful little matrix which takes 2D clipspace {-1, 1} to {0,1}
|
||
|
and inverts the Y. */
|
||
|
static const Matrix4 CLIPSPACE2DTOIMAGESPACE;
|
||
|
|
||
|
inline Matrix4 operator*(Real scalar) const
|
||
|
{
|
||
|
return Matrix4(
|
||
|
scalar*m[0][0], scalar*m[0][1], scalar*m[0][2], scalar*m[0][3],
|
||
|
scalar*m[1][0], scalar*m[1][1], scalar*m[1][2], scalar*m[1][3],
|
||
|
scalar*m[2][0], scalar*m[2][1], scalar*m[2][2], scalar*m[2][3],
|
||
|
scalar*m[3][0], scalar*m[3][1], scalar*m[3][2], scalar*m[3][3]);
|
||
|
}
|
||
|
|
||
|
Matrix4 adjoint() const;
|
||
|
Real determinant() const;
|
||
|
Matrix4 inverse() const;
|
||
|
|
||
|
/** Building a Matrix4 from orientation / scale / position.
|
||
|
@remarks
|
||
|
Transform is performed in the order scale, rotate, translation, i.e. translation is independent
|
||
|
of orientation axes, scale does not affect size of translation, rotation and scaling are always
|
||
|
centered on the origin.
|
||
|
*/
|
||
|
void makeTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation);
|
||
|
|
||
|
/** Building an inverse Matrix4 from orientation / scale / position.
|
||
|
@remarks
|
||
|
As makeTransform except it build the inverse given the same data as makeTransform, so
|
||
|
performing -translation, -rotate, 1/scale in that order.
|
||
|
*/
|
||
|
void makeInverseTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation);
|
||
|
|
||
|
/** Decompose a Matrix4 to orientation / scale / position.
|
||
|
*/
|
||
|
void decomposition(Vector3& position, Vector3& scale, Quaternion& orientation) const;
|
||
|
|
||
|
/** Check whether or not the matrix is affine matrix.
|
||
|
@remarks
|
||
|
An affine matrix is a 4x4 matrix with row 3 equal to (0, 0, 0, 1),
|
||
|
e.g. no projective coefficients.
|
||
|
*/
|
||
|
inline bool isAffine(void) const
|
||
|
{
|
||
|
return m[3][0] == 0 && m[3][1] == 0 && m[3][2] == 0 && m[3][3] == 1;
|
||
|
}
|
||
|
|
||
|
/** Returns the inverse of the affine matrix.
|
||
|
@note
|
||
|
The matrix must be an affine matrix. @see Matrix4::isAffine.
|
||
|
*/
|
||
|
Matrix4 inverseAffine(void) const;
|
||
|
|
||
|
/** Concatenate two affine matrices.
|
||
|
@note
|
||
|
The matrices must be affine matrix. @see Matrix4::isAffine.
|
||
|
*/
|
||
|
inline Matrix4 concatenateAffine(const Matrix4 &m2) const
|
||
|
{
|
||
|
assert(isAffine() && m2.isAffine());
|
||
|
|
||
|
return Matrix4(
|
||
|
m[0][0] * m2.m[0][0] + m[0][1] * m2.m[1][0] + m[0][2] * m2.m[2][0],
|
||
|
m[0][0] * m2.m[0][1] + m[0][1] * m2.m[1][1] + m[0][2] * m2.m[2][1],
|
||
|
m[0][0] * m2.m[0][2] + m[0][1] * m2.m[1][2] + m[0][2] * m2.m[2][2],
|
||
|
m[0][0] * m2.m[0][3] + m[0][1] * m2.m[1][3] + m[0][2] * m2.m[2][3] + m[0][3],
|
||
|
|
||
|
m[1][0] * m2.m[0][0] + m[1][1] * m2.m[1][0] + m[1][2] * m2.m[2][0],
|
||
|
m[1][0] * m2.m[0][1] + m[1][1] * m2.m[1][1] + m[1][2] * m2.m[2][1],
|
||
|
m[1][0] * m2.m[0][2] + m[1][1] * m2.m[1][2] + m[1][2] * m2.m[2][2],
|
||
|
m[1][0] * m2.m[0][3] + m[1][1] * m2.m[1][3] + m[1][2] * m2.m[2][3] + m[1][3],
|
||
|
|
||
|
m[2][0] * m2.m[0][0] + m[2][1] * m2.m[1][0] + m[2][2] * m2.m[2][0],
|
||
|
m[2][0] * m2.m[0][1] + m[2][1] * m2.m[1][1] + m[2][2] * m2.m[2][1],
|
||
|
m[2][0] * m2.m[0][2] + m[2][1] * m2.m[1][2] + m[2][2] * m2.m[2][2],
|
||
|
m[2][0] * m2.m[0][3] + m[2][1] * m2.m[1][3] + m[2][2] * m2.m[2][3] + m[2][3],
|
||
|
|
||
|
0, 0, 0, 1);
|
||
|
}
|
||
|
|
||
|
/** 3-D Vector transformation specially for an affine matrix.
|
||
|
@remarks
|
||
|
Transforms the given 3-D vector by the matrix, projecting the
|
||
|
result back into <i>w</i> = 1.
|
||
|
@note
|
||
|
The matrix must be an affine matrix. @see Matrix4::isAffine.
|
||
|
*/
|
||
|
inline Vector3 transformAffine(const Vector3& v) const
|
||
|
{
|
||
|
assert(isAffine());
|
||
|
|
||
|
return Vector3(
|
||
|
m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3],
|
||
|
m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3],
|
||
|
m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3]);
|
||
|
}
|
||
|
|
||
|
/** 4-D Vector transformation specially for an affine matrix.
|
||
|
@note
|
||
|
The matrix must be an affine matrix. @see Matrix4::isAffine.
|
||
|
*/
|
||
|
inline Vector4 transformAffine(const Vector4& v) const
|
||
|
{
|
||
|
assert(isAffine());
|
||
|
|
||
|
return Vector4(
|
||
|
m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w,
|
||
|
m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w,
|
||
|
m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w,
|
||
|
v.w);
|
||
|
}
|
||
|
|
||
|
|
||
|
inline void setRow(int iRow,const Ogre::Vector4& vec)
|
||
|
{
|
||
|
assert(iRow >=0 && iRow <4);
|
||
|
m[iRow][0] = vec.x;
|
||
|
m[iRow][1] = vec.y;
|
||
|
m[iRow][2] = vec.z;
|
||
|
m[iRow][3] = vec.w;
|
||
|
}
|
||
|
|
||
|
inline Vector4 getRow(int iRow) const
|
||
|
{
|
||
|
assert(iRow >=0 && iRow <4);
|
||
|
return Vector4(m[iRow][0],m[iRow][1],m[iRow][2],m[iRow][3]);
|
||
|
}
|
||
|
|
||
|
inline void setCol(int iCol,const Ogre::Vector4& vec)
|
||
|
{
|
||
|
assert(iCol >=0 && iCol <4);
|
||
|
m[0][iCol] = vec.x;
|
||
|
m[1][iCol] = vec.y;
|
||
|
m[2][iCol] = vec.z;
|
||
|
m[3][iCol] = vec.w;
|
||
|
}
|
||
|
|
||
|
inline Vector4 getCol(int iCol) const
|
||
|
{
|
||
|
assert(iCol >=0 && iCol <4);
|
||
|
return Vector4(m[0][iCol],m[1][iCol],m[2][iCol],m[3][iCol]);
|
||
|
}
|
||
|
|
||
|
inline Real* getArray()
|
||
|
{
|
||
|
return _m;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/* Removed from Vector4 and made a non-member here because otherwise
|
||
|
OgreMatrix4.h and OgreVector4.h have to try to include and inline each
|
||
|
other, which frankly doesn't work ;)
|
||
|
*/
|
||
|
inline Vector4 operator * (const Vector4& v, const Matrix4& mat)
|
||
|
{
|
||
|
return Vector4(
|
||
|
v.x*mat[0][0] + v.y*mat[1][0] + v.z*mat[2][0] + v.w*mat[3][0],
|
||
|
v.x*mat[0][1] + v.y*mat[1][1] + v.z*mat[2][1] + v.w*mat[3][1],
|
||
|
v.x*mat[0][2] + v.y*mat[1][2] + v.z*mat[2][2] + v.w*mat[3][2],
|
||
|
v.x*mat[0][3] + v.y*mat[1][3] + v.z*mat[2][3] + v.w*mat[3][3]
|
||
|
);
|
||
|
}
|
||
|
/** @} */
|
||
|
/** @} */
|
||
|
|
||
|
|
||
|
}
|
||
|
#endif
|