263 lines
9.9 KiB
C++
263 lines
9.9 KiB
C++
|
/*
|
||
|
-----------------------------------------------------------------------------
|
||
|
This source file is part of OGRE
|
||
|
(Object-oriented Graphics Rendering Engine)
|
||
|
For the latest info, see http://www.ogre3d.org/
|
||
|
|
||
|
Copyright (c) 2000-2009 Torus Knot Software Ltd
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
of this software and associated documentation files (the "Software"), to deal
|
||
|
in the Software without restriction, including without limitation the rights
|
||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
copies of the Software, and to permit persons to whom the Software is
|
||
|
furnished to do so, subject to the following conditions:
|
||
|
|
||
|
The above copyright notice and this permission notice shall be included in
|
||
|
all copies or substantial portions of the Software.
|
||
|
|
||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
THE SOFTWARE.
|
||
|
-----------------------------------------------------------------------------
|
||
|
*/
|
||
|
#include "stdneb.h"
|
||
|
#include "OgreMatrix4.h"
|
||
|
|
||
|
#include "OgreVector3.h"
|
||
|
#include "OgreMatrix3.h"
|
||
|
|
||
|
namespace Ogre
|
||
|
{
|
||
|
|
||
|
const Matrix4 Matrix4::ZERO(
|
||
|
0, 0, 0, 0,
|
||
|
0, 0, 0, 0,
|
||
|
0, 0, 0, 0,
|
||
|
0, 0, 0, 0 );
|
||
|
|
||
|
const Matrix4 Matrix4::IDENTITY(
|
||
|
1, 0, 0, 0,
|
||
|
0, 1, 0, 0,
|
||
|
0, 0, 1, 0,
|
||
|
0, 0, 0, 1 );
|
||
|
|
||
|
const Matrix4 Matrix4::CLIPSPACE2DTOIMAGESPACE(
|
||
|
0.5, 0, 0, 0.5,
|
||
|
0, -0.5, 0, 0.5,
|
||
|
0, 0, 1, 0,
|
||
|
0, 0, 0, 1);
|
||
|
|
||
|
//-----------------------------------------------------------------------
|
||
|
inline static Real
|
||
|
MINOR(const Matrix4& m, const size_t r0, const size_t r1, const size_t r2,
|
||
|
const size_t c0, const size_t c1, const size_t c2)
|
||
|
{
|
||
|
return m[r0][c0] * (m[r1][c1] * m[r2][c2] - m[r2][c1] * m[r1][c2]) -
|
||
|
m[r0][c1] * (m[r1][c0] * m[r2][c2] - m[r2][c0] * m[r1][c2]) +
|
||
|
m[r0][c2] * (m[r1][c0] * m[r2][c1] - m[r2][c0] * m[r1][c1]);
|
||
|
}
|
||
|
//-----------------------------------------------------------------------
|
||
|
Matrix4 Matrix4::adjoint() const
|
||
|
{
|
||
|
return Matrix4( MINOR(*this, 1, 2, 3, 1, 2, 3),
|
||
|
-MINOR(*this, 0, 2, 3, 1, 2, 3),
|
||
|
MINOR(*this, 0, 1, 3, 1, 2, 3),
|
||
|
-MINOR(*this, 0, 1, 2, 1, 2, 3),
|
||
|
|
||
|
-MINOR(*this, 1, 2, 3, 0, 2, 3),
|
||
|
MINOR(*this, 0, 2, 3, 0, 2, 3),
|
||
|
-MINOR(*this, 0, 1, 3, 0, 2, 3),
|
||
|
MINOR(*this, 0, 1, 2, 0, 2, 3),
|
||
|
|
||
|
MINOR(*this, 1, 2, 3, 0, 1, 3),
|
||
|
-MINOR(*this, 0, 2, 3, 0, 1, 3),
|
||
|
MINOR(*this, 0, 1, 3, 0, 1, 3),
|
||
|
-MINOR(*this, 0, 1, 2, 0, 1, 3),
|
||
|
|
||
|
-MINOR(*this, 1, 2, 3, 0, 1, 2),
|
||
|
MINOR(*this, 0, 2, 3, 0, 1, 2),
|
||
|
-MINOR(*this, 0, 1, 3, 0, 1, 2),
|
||
|
MINOR(*this, 0, 1, 2, 0, 1, 2));
|
||
|
}
|
||
|
//-----------------------------------------------------------------------
|
||
|
Real Matrix4::determinant() const
|
||
|
{
|
||
|
return m[0][0] * MINOR(*this, 1, 2, 3, 1, 2, 3) -
|
||
|
m[0][1] * MINOR(*this, 1, 2, 3, 0, 2, 3) +
|
||
|
m[0][2] * MINOR(*this, 1, 2, 3, 0, 1, 3) -
|
||
|
m[0][3] * MINOR(*this, 1, 2, 3, 0, 1, 2);
|
||
|
}
|
||
|
//-----------------------------------------------------------------------
|
||
|
Matrix4 Matrix4::inverse() const
|
||
|
{
|
||
|
Real m00 = m[0][0], m01 = m[0][1], m02 = m[0][2], m03 = m[0][3];
|
||
|
Real m10 = m[1][0], m11 = m[1][1], m12 = m[1][2], m13 = m[1][3];
|
||
|
Real m20 = m[2][0], m21 = m[2][1], m22 = m[2][2], m23 = m[2][3];
|
||
|
Real m30 = m[3][0], m31 = m[3][1], m32 = m[3][2], m33 = m[3][3];
|
||
|
|
||
|
Real v0 = m20 * m31 - m21 * m30;
|
||
|
Real v1 = m20 * m32 - m22 * m30;
|
||
|
Real v2 = m20 * m33 - m23 * m30;
|
||
|
Real v3 = m21 * m32 - m22 * m31;
|
||
|
Real v4 = m21 * m33 - m23 * m31;
|
||
|
Real v5 = m22 * m33 - m23 * m32;
|
||
|
|
||
|
Real t00 = + (v5 * m11 - v4 * m12 + v3 * m13);
|
||
|
Real t10 = - (v5 * m10 - v2 * m12 + v1 * m13);
|
||
|
Real t20 = + (v4 * m10 - v2 * m11 + v0 * m13);
|
||
|
Real t30 = - (v3 * m10 - v1 * m11 + v0 * m12);
|
||
|
|
||
|
Real invDet = 1 / (t00 * m00 + t10 * m01 + t20 * m02 + t30 * m03);
|
||
|
|
||
|
Real d00 = t00 * invDet;
|
||
|
Real d10 = t10 * invDet;
|
||
|
Real d20 = t20 * invDet;
|
||
|
Real d30 = t30 * invDet;
|
||
|
|
||
|
Real d01 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
|
||
|
Real d11 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
|
||
|
Real d21 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
|
||
|
Real d31 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
|
||
|
|
||
|
v0 = m10 * m31 - m11 * m30;
|
||
|
v1 = m10 * m32 - m12 * m30;
|
||
|
v2 = m10 * m33 - m13 * m30;
|
||
|
v3 = m11 * m32 - m12 * m31;
|
||
|
v4 = m11 * m33 - m13 * m31;
|
||
|
v5 = m12 * m33 - m13 * m32;
|
||
|
|
||
|
Real d02 = + (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
|
||
|
Real d12 = - (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
|
||
|
Real d22 = + (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
|
||
|
Real d32 = - (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
|
||
|
|
||
|
v0 = m21 * m10 - m20 * m11;
|
||
|
v1 = m22 * m10 - m20 * m12;
|
||
|
v2 = m23 * m10 - m20 * m13;
|
||
|
v3 = m22 * m11 - m21 * m12;
|
||
|
v4 = m23 * m11 - m21 * m13;
|
||
|
v5 = m23 * m12 - m22 * m13;
|
||
|
|
||
|
Real d03 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
|
||
|
Real d13 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
|
||
|
Real d23 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
|
||
|
Real d33 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
|
||
|
|
||
|
return Matrix4(
|
||
|
d00, d01, d02, d03,
|
||
|
d10, d11, d12, d13,
|
||
|
d20, d21, d22, d23,
|
||
|
d30, d31, d32, d33);
|
||
|
}
|
||
|
//-----------------------------------------------------------------------
|
||
|
Matrix4 Matrix4::inverseAffine(void) const
|
||
|
{
|
||
|
assert(isAffine());
|
||
|
|
||
|
Real m10 = m[1][0], m11 = m[1][1], m12 = m[1][2];
|
||
|
Real m20 = m[2][0], m21 = m[2][1], m22 = m[2][2];
|
||
|
|
||
|
Real t00 = m22 * m11 - m21 * m12;
|
||
|
Real t10 = m20 * m12 - m22 * m10;
|
||
|
Real t20 = m21 * m10 - m20 * m11;
|
||
|
|
||
|
Real m00 = m[0][0], m01 = m[0][1], m02 = m[0][2];
|
||
|
|
||
|
Real invDet = 1 / (m00 * t00 + m01 * t10 + m02 * t20);
|
||
|
|
||
|
t00 *= invDet; t10 *= invDet; t20 *= invDet;
|
||
|
|
||
|
m00 *= invDet; m01 *= invDet; m02 *= invDet;
|
||
|
|
||
|
Real r00 = t00;
|
||
|
Real r01 = m02 * m21 - m01 * m22;
|
||
|
Real r02 = m01 * m12 - m02 * m11;
|
||
|
|
||
|
Real r10 = t10;
|
||
|
Real r11 = m00 * m22 - m02 * m20;
|
||
|
Real r12 = m02 * m10 - m00 * m12;
|
||
|
|
||
|
Real r20 = t20;
|
||
|
Real r21 = m01 * m20 - m00 * m21;
|
||
|
Real r22 = m00 * m11 - m01 * m10;
|
||
|
|
||
|
Real m03 = m[0][3], m13 = m[1][3], m23 = m[2][3];
|
||
|
|
||
|
Real r03 = - (r00 * m03 + r01 * m13 + r02 * m23);
|
||
|
Real r13 = - (r10 * m03 + r11 * m13 + r12 * m23);
|
||
|
Real r23 = - (r20 * m03 + r21 * m13 + r22 * m23);
|
||
|
|
||
|
return Matrix4(
|
||
|
r00, r01, r02, r03,
|
||
|
r10, r11, r12, r13,
|
||
|
r20, r21, r22, r23,
|
||
|
0, 0, 0, 1);
|
||
|
}
|
||
|
//-----------------------------------------------------------------------
|
||
|
void Matrix4::makeTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation)
|
||
|
{
|
||
|
// Ordering:
|
||
|
// 1. Scale
|
||
|
// 2. Rotate
|
||
|
// 3. Translate
|
||
|
|
||
|
Matrix3 rot3x3;
|
||
|
orientation.ToRotationMatrix(rot3x3);
|
||
|
|
||
|
// Set up final matrix with scale, rotation and translation
|
||
|
m[0][0] = scale.x * rot3x3[0][0]; m[0][1] = scale.y * rot3x3[0][1]; m[0][2] = scale.z * rot3x3[0][2]; m[0][3] = position.x;
|
||
|
m[1][0] = scale.x * rot3x3[1][0]; m[1][1] = scale.y * rot3x3[1][1]; m[1][2] = scale.z * rot3x3[1][2]; m[1][3] = position.y;
|
||
|
m[2][0] = scale.x * rot3x3[2][0]; m[2][1] = scale.y * rot3x3[2][1]; m[2][2] = scale.z * rot3x3[2][2]; m[2][3] = position.z;
|
||
|
|
||
|
// No projection term
|
||
|
m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1;
|
||
|
}
|
||
|
//-----------------------------------------------------------------------
|
||
|
void Matrix4::makeInverseTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation)
|
||
|
{
|
||
|
// Invert the parameters
|
||
|
Vector3 invTranslate = -position;
|
||
|
Vector3 invScale(1 / scale.x, 1 / scale.y, 1 / scale.z);
|
||
|
Quaternion invRot = orientation.Inverse();
|
||
|
|
||
|
// Because we're inverting, order is translation, rotation, scale
|
||
|
// So make translation relative to scale & rotation
|
||
|
invTranslate = invRot * invTranslate; // rotate
|
||
|
invTranslate *= invScale; // scale
|
||
|
|
||
|
// Next, make a 3x3 rotation matrix
|
||
|
Matrix3 rot3x3;
|
||
|
invRot.ToRotationMatrix(rot3x3);
|
||
|
|
||
|
// Set up final matrix with scale, rotation and translation
|
||
|
m[0][0] = invScale.x * rot3x3[0][0]; m[0][1] = invScale.x * rot3x3[0][1]; m[0][2] = invScale.x * rot3x3[0][2]; m[0][3] = invTranslate.x;
|
||
|
m[1][0] = invScale.y * rot3x3[1][0]; m[1][1] = invScale.y * rot3x3[1][1]; m[1][2] = invScale.y * rot3x3[1][2]; m[1][3] = invTranslate.y;
|
||
|
m[2][0] = invScale.z * rot3x3[2][0]; m[2][1] = invScale.z * rot3x3[2][1]; m[2][2] = invScale.z * rot3x3[2][2]; m[2][3] = invTranslate.z;
|
||
|
|
||
|
// No projection term
|
||
|
m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1;
|
||
|
}
|
||
|
//-----------------------------------------------------------------------
|
||
|
void Matrix4::decomposition(Vector3& position, Vector3& scale, Quaternion& orientation) const
|
||
|
{
|
||
|
//assert(isAffine());
|
||
|
assert( m[3][0] == 0 && m[3][1] == 0 && m[3][2] == 0 );
|
||
|
|
||
|
Matrix3 m3x3;
|
||
|
extract3x3Matrix(m3x3);
|
||
|
|
||
|
Matrix3 matQ;
|
||
|
Vector3 vecU;
|
||
|
m3x3.QDUDecomposition( matQ, scale, vecU );
|
||
|
|
||
|
orientation = Quaternion( matQ );
|
||
|
position = Vector3( m[0][3], m[1][3], m[2][3] );
|
||
|
}
|
||
|
|
||
|
}
|