225 lines
5.5 KiB
C
225 lines
5.5 KiB
C
|
/****************************************************************************
|
||
|
Copyright (c) 2004,RadonLabs GmbH
|
||
|
Copyright (c) 2011-2013,WebJet Business Division,CYOU
|
||
|
|
||
|
http://www.genesis-3d.com.cn
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
of this software and associated documentation files (the "Software"), to deal
|
||
|
in the Software without restriction, including without limitation the rights
|
||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
copies of the Software, and to permit persons to whom the Software is
|
||
|
furnished to do so, subject to the following conditions:
|
||
|
|
||
|
The above copyright notice and this permission notice shall be included in
|
||
|
all copies or substantial portions of the Software.
|
||
|
|
||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
THE SOFTWARE.
|
||
|
****************************************************************************/
|
||
|
|
||
|
#pragma once
|
||
|
#ifndef MATH_LINE_H
|
||
|
#define MATH_LINE_H
|
||
|
//------------------------------------------------------------------------------
|
||
|
/**
|
||
|
@class Math::line
|
||
|
|
||
|
A line in 3d space.
|
||
|
|
||
|
(C) 2004 RadonLabs GmbH
|
||
|
*/
|
||
|
#include "math/point.h"
|
||
|
#include "math/vector.h"
|
||
|
#include "math/scalar.h"
|
||
|
|
||
|
//------------------------------------------------------------------------------
|
||
|
namespace Math
|
||
|
{
|
||
|
class line
|
||
|
{
|
||
|
public:
|
||
|
/// default constructor
|
||
|
line();
|
||
|
/// component constructor
|
||
|
line(const point& startPoint, const point& endPoint);
|
||
|
/// copy constructor
|
||
|
line(const line& rhs);
|
||
|
/// set start and end point
|
||
|
void set(const point& startPoint, const point& endPoint);
|
||
|
/// get start point
|
||
|
const point& start() const;
|
||
|
/// get end point
|
||
|
point end() const;
|
||
|
/// get vector
|
||
|
const vector& vec() const;
|
||
|
/// get length
|
||
|
scalar length() const;
|
||
|
/// get squared length
|
||
|
scalar lengthsq() const;
|
||
|
/// minimal distance of point to line
|
||
|
scalar distance(const point& p) const;
|
||
|
/// intersect with line
|
||
|
bool intersect(const line& l, point& pa, point& pb) const;
|
||
|
/// return t of the closest point on the line
|
||
|
scalar closestpoint(const point& p) const;
|
||
|
/// return p = b + m*t
|
||
|
point pointat(scalar t) const;
|
||
|
|
||
|
point b;
|
||
|
vector m;
|
||
|
};
|
||
|
|
||
|
//------------------------------------------------------------------------------
|
||
|
/**
|
||
|
*/
|
||
|
inline
|
||
|
line::line()
|
||
|
{
|
||
|
// empty
|
||
|
}
|
||
|
|
||
|
//------------------------------------------------------------------------------
|
||
|
/**
|
||
|
*/
|
||
|
inline
|
||
|
line::line(const point& startPoint, const point& endPoint) :
|
||
|
b(startPoint),
|
||
|
m(endPoint - startPoint)
|
||
|
{
|
||
|
// empty
|
||
|
}
|
||
|
|
||
|
//------------------------------------------------------------------------------
|
||
|
/**
|
||
|
*/
|
||
|
inline
|
||
|
line::line(const line& rhs) :
|
||
|
b(rhs.b),
|
||
|
m(rhs.m)
|
||
|
{
|
||
|
// empty
|
||
|
}
|
||
|
|
||
|
//------------------------------------------------------------------------------
|
||
|
/**
|
||
|
*/
|
||
|
inline void
|
||
|
line::set(const point& startPoint, const point& endPoint)
|
||
|
{
|
||
|
this->b = startPoint;
|
||
|
this->m = endPoint - startPoint;
|
||
|
}
|
||
|
|
||
|
//------------------------------------------------------------------------------
|
||
|
/**
|
||
|
*/
|
||
|
inline const point&
|
||
|
line::start() const
|
||
|
{
|
||
|
return this->b;
|
||
|
}
|
||
|
|
||
|
//------------------------------------------------------------------------------
|
||
|
/**
|
||
|
*/
|
||
|
inline point
|
||
|
line::end() const
|
||
|
{
|
||
|
return this->b + this->m;
|
||
|
}
|
||
|
|
||
|
//------------------------------------------------------------------------------
|
||
|
/**
|
||
|
*/
|
||
|
inline const vector&
|
||
|
line::vec() const
|
||
|
{
|
||
|
return this->m;
|
||
|
}
|
||
|
|
||
|
//------------------------------------------------------------------------------
|
||
|
/**
|
||
|
*/
|
||
|
inline scalar
|
||
|
line::length() const
|
||
|
{
|
||
|
return this->m.length();
|
||
|
}
|
||
|
|
||
|
//------------------------------------------------------------------------------
|
||
|
/**
|
||
|
*/
|
||
|
inline scalar
|
||
|
line::lengthsq() const
|
||
|
{
|
||
|
return this->m.lengthsq();
|
||
|
}
|
||
|
|
||
|
//------------------------------------------------------------------------------
|
||
|
/**
|
||
|
Returns a point on the line which is closest to a another point in space.
|
||
|
This just returns the parameter t on where the point is located. If t is
|
||
|
between 0 and 1, the point is on the line, otherwise not. To get the
|
||
|
actual 3d point p:
|
||
|
|
||
|
p = m + b*t
|
||
|
*/
|
||
|
inline scalar
|
||
|
line::closestpoint(const point& p) const
|
||
|
{
|
||
|
vector diff(p - this->b);
|
||
|
scalar l = float4::dot3(this->m, this->m);
|
||
|
if (l > 0.0f)
|
||
|
{
|
||
|
scalar t = float4::dot3(this->m, diff) / l;
|
||
|
return t;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return 0.0f;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//------------------------------------------------------------------------------
|
||
|
/**
|
||
|
*/
|
||
|
inline scalar
|
||
|
line::distance(const point& p) const
|
||
|
{
|
||
|
vector diff(p - this->b);
|
||
|
scalar l = float4::dot3(this->m, this->m);
|
||
|
if (l > 0.0f)
|
||
|
{
|
||
|
scalar t = float4::dot3(this->m, diff) / l;
|
||
|
diff = diff - this->m * t;
|
||
|
return diff.length();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// line is really a point...
|
||
|
vector v(p - this->b);
|
||
|
return v.length();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//------------------------------------------------------------------------------
|
||
|
/**
|
||
|
Returns p = b + m * t, given t. Note that the point is not on the line
|
||
|
if 0.0 > t > 1.0
|
||
|
*/
|
||
|
inline point
|
||
|
line::pointat(scalar t) const
|
||
|
{
|
||
|
return this->b + this->m * t;
|
||
|
}
|
||
|
|
||
|
} // namespace Math
|
||
|
//------------------------------------------------------------------------------
|
||
|
#endif
|